Bladder Urothelial Carinoma: Correlation between molecular cancer subtypes and selected clinical features
Maintained by TCGA GDAC Team (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 4 different clustering approaches and 4 clinical features across 56 patients, 2 significant findings detected with P value < 0.05.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 4 subtypes that correlate to 'Time to Death'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 4 different clustering approaches and 4 clinical features. Shown in the table are P values from statistical tests. Thresholded by P value < 0.05, 2 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER KARNOFSKY
PERFORMANCE
SCORE
Statistical Tests logrank test ANOVA Fisher's exact test ANOVA
RNAseq CNMF subtypes 0.0369 0.284 0.187 0.746
RNAseq cHierClus subtypes 0.799 0.733 0.398 1
MIRseq CNMF subtypes 0.387 0.423 0.405 0.557
MIRseq cHierClus subtypes 0.0258 0.367 0.734 0.376
Clustering Approach #1: 'RNAseq CNMF subtypes'

Table S1.  Get Full Table Description of clustering approach #1: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 22 9 16 6
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.0369 (logrank test)

Table S2.  Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 53 19 0.4 - 118.9 (8.3)
subtype1 22 6 0.5 - 100.5 (7.4)
subtype2 9 6 5.1 - 118.9 (12.2)
subtype3 16 5 0.4 - 75.3 (8.9)
subtype4 6 2 1.8 - 10.6 (3.8)

Figure S1.  Get High-res Image Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.284 (ANOVA)

Table S3.  Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 53 68.4 (10.2)
subtype1 22 66.8 (10.6)
subtype2 9 67.1 (9.9)
subtype3 16 68.5 (10.0)
subtype4 6 75.8 (8.5)

Figure S2.  Get High-res Image Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.187 (Fisher's exact test)

Table S4.  Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 31 22
subtype1 16 6
subtype2 6 3
subtype3 7 9
subtype4 2 4

Figure S3.  Get High-res Image Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.746 (ANOVA)

Table S5.  Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 80.0 (16.7)
subtype1 4 82.5 (15.0)
subtype2 2 85.0 (7.1)
subtype3 4 77.5 (25.0)
subtype4 1 70.0 (NA)

Figure S4.  Get High-res Image Clustering Approach #1: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #2: 'RNAseq cHierClus subtypes'

Table S6.  Get Full Table Description of clustering approach #2: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2
Number of samples 22 31
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.799 (logrank test)

Table S7.  Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 53 19 0.4 - 118.9 (8.3)
subtype1 22 10 0.4 - 75.3 (8.9)
subtype2 31 9 0.5 - 118.9 (7.0)

Figure S5.  Get High-res Image Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.733 (t-test)

Table S8.  Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 53 68.4 (10.2)
subtype1 22 67.8 (10.4)
subtype2 31 68.8 (10.3)

Figure S6.  Get High-res Image Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.398 (Fisher's exact test)

Table S9.  Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 31 22
subtype1 11 11
subtype2 20 11

Figure S7.  Get High-res Image Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 1 (t-test)

Table S10.  Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 80.0 (16.7)
subtype1 6 80.0 (20.0)
subtype2 5 80.0 (14.1)

Figure S8.  Get High-res Image Clustering Approach #2: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #3: 'MIRseq CNMF subtypes'

Table S11.  Get Full Table Description of clustering approach #3: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 10 27 15
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.387 (logrank test)

Table S12.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 52 21 0.4 - 118.9 (8.0)
subtype1 10 3 1.5 - 118.9 (7.8)
subtype2 27 14 0.4 - 49.2 (8.6)
subtype3 15 4 0.5 - 100.5 (7.2)

Figure S9.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.423 (ANOVA)

Table S13.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 52 68.7 (10.0)
subtype1 10 71.1 (9.0)
subtype2 27 66.9 (10.0)
subtype3 15 70.2 (10.8)

Figure S10.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.405 (Fisher's exact test)

Table S14.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 33 19
subtype1 8 2
subtype2 17 10
subtype3 8 7

Figure S11.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.557 (ANOVA)

Table S15.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 10 79.0 (17.3)
subtype2 7 77.1 (19.8)
subtype3 3 83.3 (11.5)

Figure S12.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #4: 'MIRseq cHierClus subtypes'

Table S16.  Get Full Table Description of clustering approach #4: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 9 12 12 19
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0258 (logrank test)

Table S17.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 52 21 0.4 - 118.9 (8.0)
subtype1 9 7 2.0 - 26.9 (9.0)
subtype2 12 3 0.4 - 49.2 (10.0)
subtype3 12 4 1.5 - 118.9 (9.5)
subtype4 19 7 0.5 - 100.5 (7.2)

Figure S13.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.367 (ANOVA)

Table S18.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 52 68.7 (10.0)
subtype1 9 69.6 (7.5)
subtype2 12 64.2 (11.8)
subtype3 12 70.6 (8.5)
subtype4 19 69.9 (10.6)

Figure S14.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.734 (Fisher's exact test)

Table S19.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 33 19
subtype1 5 4
subtype2 8 4
subtype3 9 3
subtype4 11 8

Figure S15.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.376 (ANOVA)

Table S20.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 10 79.0 (17.3)
subtype1 1 80.0 (NA)
subtype2 5 74.0 (23.0)
subtype4 4 85.0 (10.0)

Figure S16.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

Methods & Data
Input
  • Cluster data file = BLCA.mergedcluster.txt

  • Clinical data file = BLCA.clin.merged.picked.txt

  • Number of patients = 56

  • Number of clustering approaches = 4

  • Number of selected clinical features = 4

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R

Download Results

This is an experimental feature. Location of data archives could not be determined.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
Meta
  • Maintainer = TCGA GDAC Team