Kidney Renal Papillary Cell Carcinoma: Correlation between molecular cancer subtypes and selected clinical features
Maintained by TCGA GDAC Team (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 4 different clustering approaches and 4 clinical features across 16 patients, no significant finding detected with P value < 0.05.

  • CNMF clustering analysis on array-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based miR expression data identified 2 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 2 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 4 different clustering approaches and 4 clinical features. Shown in the table are P values from statistical tests. Thresholded by P value < 0.05, no significant finding detected.

Clinical
Features
Time
to
Death
AGE GENDER PATHOLOGY
T
Statistical Tests logrank test t-test Fisher's exact test Fisher's exact test
mRNA CNMF subtypes 0.666 0.182 0.585 0.0601
mRNA cHierClus subtypes 0.0699 0.948 1 0.131
MIRseq CNMF subtypes 0.197 0.374 0.0885 0.0601
MIRseq cHierClus subtypes 0.0833 0.647 0.245 0.308
Clustering Approach #1: 'mRNA CNMF subtypes'

Table S1.  Get Full Table Description of clustering approach #1: 'mRNA CNMF subtypes'

Cluster Labels 1 2
Number of samples 7 9
'mRNA CNMF subtypes' versus 'Time to Death'

P value = 0.666 (logrank test)

Table S2.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 16 2 0.5 - 58.5 (7.8)
subtype1 7 1 0.5 - 53.8 (5.9)
subtype2 9 1 1.1 - 58.5 (10.8)

Figure S1.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA CNMF subtypes' versus 'AGE'

P value = 0.182 (t-test)

Table S3.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 16 57.9 (11.5)
subtype1 7 53.6 (10.3)
subtype2 9 61.3 (11.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'mRNA CNMF subtypes' versus 'GENDER'

P value = 0.585 (Fisher's exact test)

Table S4.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 12 4
subtype1 6 1
subtype2 6 3

Figure S3.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA CNMF subtypes' versus 'PATHOLOGY.T'

P value = 0.0601 (Fisher's exact test)

Table S5.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2+T3
ALL 7 9
subtype1 1 6
subtype2 6 3

Figure S4.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

Clustering Approach #2: 'mRNA cHierClus subtypes'

Table S6.  Get Full Table Description of clustering approach #2: 'mRNA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 4 7 5
'mRNA cHierClus subtypes' versus 'Time to Death'

P value = 0.0699 (logrank test)

Table S7.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 16 2 0.5 - 58.5 (7.8)
subtype1 4 1 10.8 - 58.5 (40.4)
subtype2 7 1 0.5 - 25.1 (4.4)
subtype3 5 0 0.7 - 53.8 (4.1)

Figure S5.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA cHierClus subtypes' versus 'AGE'

P value = 0.948 (ANOVA)

Table S8.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 16 57.9 (11.5)
subtype1 4 57.0 (5.0)
subtype2 7 57.4 (13.0)
subtype3 5 59.4 (14.8)

Figure S6.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'mRNA cHierClus subtypes' versus 'GENDER'

P value = 1 (Fisher's exact test)

Table S9.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 12 4
subtype1 3 1
subtype2 5 2
subtype3 4 1

Figure S7.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA cHierClus subtypes' versus 'PATHOLOGY.T'

P value = 0.131 (Fisher's exact test)

Table S10.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2+T3
ALL 7 9
subtype1 3 1
subtype2 1 6
subtype3 3 2

Figure S8.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

Clustering Approach #3: 'MIRseq CNMF subtypes'

Table S11.  Get Full Table Description of clustering approach #3: 'MIRseq CNMF subtypes'

Cluster Labels 1 2
Number of samples 7 9
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.197 (logrank test)

Table S12.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 16 2 0.5 - 58.5 (7.8)
subtype1 7 1 0.7 - 30.3 (5.9)
subtype2 9 1 0.5 - 58.5 (10.8)

Figure S9.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.374 (t-test)

Table S13.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 16 57.9 (11.5)
subtype1 7 55.0 (10.4)
subtype2 9 60.2 (12.4)

Figure S10.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.0885 (Fisher's exact test)

Table S14.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 12 4
subtype1 7 0
subtype2 5 4

Figure S11.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq CNMF subtypes' versus 'PATHOLOGY.T'

P value = 0.0601 (Fisher's exact test)

Table S15.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2+T3
ALL 7 9
subtype1 1 6
subtype2 6 3

Figure S12.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

Clustering Approach #4: 'MIRseq cHierClus subtypes'

Table S16.  Get Full Table Description of clustering approach #4: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2
Number of samples 5 11
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0833 (logrank test)

Table S17.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 16 2 0.5 - 58.5 (7.8)
subtype1 5 1 3.6 - 25.1 (5.9)
subtype2 11 1 0.5 - 58.5 (10.8)

Figure S13.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.647 (t-test)

Table S18.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 16 57.9 (11.5)
subtype1 5 55.8 (12.3)
subtype2 11 58.9 (11.6)

Figure S14.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.245 (Fisher's exact test)

Table S19.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 12 4
subtype1 5 0
subtype2 7 4

Figure S15.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq cHierClus subtypes' versus 'PATHOLOGY.T'

P value = 0.308 (Fisher's exact test)

Table S20.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2+T3
ALL 7 9
subtype1 1 4
subtype2 6 5

Figure S16.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

Methods & Data
Input
  • Cluster data file = KIRP.mergedcluster.txt

  • Clinical data file = KIRP.clin.merged.picked.txt

  • Number of patients = 16

  • Number of clustering approaches = 4

  • Number of selected clinical features = 4

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Download Results

This is an experimental feature. Location of data archives could not be determined.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
Meta
  • Maintainer = TCGA GDAC Team