Head and Neck Squamous Cell Carcinoma: Correlation between molecular cancer subtypes and selected clinical features
Maintained by TCGA GDAC Team (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 5 different clustering approaches and 8 clinical features across 290 patients, 5 significant findings detected with P value < 0.05.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE',  'GENDER', and 'PATHOLOGY.T'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'PATHOLOGY.N'.

  • CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that correlate to 'PATHOLOGY.N'.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 5 different clustering approaches and 8 clinical features. Shown in the table are P values from statistical tests. Thresholded by P value < 0.05, 5 significant findings detected.

Clinical
Features
Statistical
Tests
METHLYATION
CNMF
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRseq
CNMF
subtypes
MIRseq
cHierClus
subtypes
Time to Death logrank test 0.208 0.201 0.0699 0.344 0.222
AGE ANOVA 0.0437 0.579 0.355 0.613 0.695
GENDER Fisher's exact test 0.0065 0.711 0.133 0.325 0.746
PATHOLOGY T Chi-square test 0.0162 0.64 0.141 0.168 0.142
PATHOLOGY N Chi-square test 0.331 0.338 0.0281 0.0273 0.541
PATHOLOGICSPREAD(M) Fisher's exact test 0.777 1 0.747 0.634 0.379
RADIATIONS RADIATION REGIMENINDICATION Fisher's exact test 0.944 0.719 0.895 0.698 0.798
NEOADJUVANT THERAPY Fisher's exact test 0.721 0.624 0.408 0.583 0.494
Clustering Approach #1: 'METHLYATION CNMF'

Table S1.  Get Full Table Description of clustering approach #1: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 90 97 103
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.208 (logrank test)

Table S2.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 288 120 0.1 - 210.9 (13.8)
subtype1 89 39 1.0 - 114.9 (13.6)
subtype2 97 37 0.1 - 142.5 (16.6)
subtype3 102 44 0.1 - 210.9 (13.0)

Figure S1.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.0437 (ANOVA)

Table S3.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 290 61.4 (12.2)
subtype1 90 58.8 (12.7)
subtype2 97 61.9 (10.9)
subtype3 103 63.1 (12.6)

Figure S2.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.0065 (Fisher's exact test)

Table S4.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 208 82
subtype1 70 20
subtype2 76 21
subtype3 62 41

Figure S3.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'PATHOLOGY.T'

P value = 0.0162 (Chi-square test)

Table S5.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2 T3 T4
ALL 19 81 77 103
subtype1 4 20 28 38
subtype2 2 32 28 29
subtype3 13 29 21 36

Figure S4.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T'

'METHLYATION CNMF' versus 'PATHOLOGY.N'

P value = 0.331 (Chi-square test)

Table S6.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N'

nPatients N0 N1 N2 N3
ALL 113 44 108 4
subtype1 41 17 27 1
subtype2 33 10 43 1
subtype3 39 17 38 2

Figure S5.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N'

'METHLYATION CNMF' versus 'PATHOLOGICSPREAD(M)'

P value = 0.777 (Fisher's exact test)

Table S7.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

nPatients M0 M1
ALL 286 3
subtype1 89 0
subtype2 96 1
subtype3 101 2

Figure S6.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.944 (Fisher's exact test)

Table S8.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 212 78
subtype1 67 23
subtype2 70 27
subtype3 75 28

Figure S7.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'METHLYATION CNMF' versus 'NEOADJUVANT.THERAPY'

P value = 0.721 (Fisher's exact test)

Table S9.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 48 242
subtype1 15 75
subtype2 18 79
subtype3 15 88

Figure S8.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Clustering Approach #2: 'RNAseq CNMF subtypes'

Table S10.  Get Full Table Description of clustering approach #2: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 73 65 90
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.201 (logrank test)

Table S11.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 227 95 0.1 - 210.9 (14.0)
subtype1 72 33 0.1 - 210.9 (15.5)
subtype2 65 30 1.5 - 142.5 (13.0)
subtype3 90 32 0.1 - 135.3 (13.4)

Figure S9.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.579 (ANOVA)

Table S12.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 228 61.2 (12.3)
subtype1 73 60.3 (13.2)
subtype2 65 60.8 (12.5)
subtype3 90 62.2 (11.5)

Figure S10.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.711 (Fisher's exact test)

Table S13.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 169 59
subtype1 54 19
subtype2 46 19
subtype3 69 21

Figure S11.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T'

P value = 0.64 (Chi-square test)

Table S14.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2 T3 T4
ALL 11 61 64 83
subtype1 3 15 22 30
subtype2 5 20 16 24
subtype3 3 26 26 29

Figure S12.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N'

P value = 0.338 (Chi-square test)

Table S15.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

nPatients N0 N1 N2 N3
ALL 85 37 88 3
subtype1 30 17 22 1
subtype2 21 10 31 1
subtype3 34 10 35 1

Figure S13.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

'RNAseq CNMF subtypes' versus 'PATHOLOGICSPREAD(M)'

P value = 1 (Fisher's exact test)

Table S16.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

nPatients M0 M1
ALL 225 2
subtype1 72 1
subtype2 64 0
subtype3 89 1

Figure S14.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.719 (Fisher's exact test)

Table S17.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 166 62
subtype1 55 18
subtype2 45 20
subtype3 66 24

Figure S15.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq CNMF subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.624 (Fisher's exact test)

Table S18.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 38 190
subtype1 10 63
subtype2 13 52
subtype3 15 75

Figure S16.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Clustering Approach #3: 'RNAseq cHierClus subtypes'

Table S19.  Get Full Table Description of clustering approach #3: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 64 70 94
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0699 (logrank test)

Table S20.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 227 95 0.1 - 210.9 (14.0)
subtype1 64 23 0.1 - 135.3 (11.6)
subtype2 70 34 1.5 - 142.5 (13.2)
subtype3 93 38 0.1 - 210.9 (15.8)

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.355 (ANOVA)

Table S21.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 228 61.2 (12.3)
subtype1 64 63.1 (11.2)
subtype2 70 60.5 (13.6)
subtype3 94 60.4 (12.0)

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.133 (Fisher's exact test)

Table S22.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 169 59
subtype1 48 16
subtype2 46 24
subtype3 75 19

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T'

P value = 0.141 (Chi-square test)

Table S23.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2 T3 T4
ALL 11 61 64 83
subtype1 2 23 16 18
subtype2 6 20 19 25
subtype3 3 18 29 40

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N'

P value = 0.0281 (Chi-square test)

Table S24.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

nPatients N0 N1 N2 N3
ALL 85 37 88 3
subtype1 19 5 31 1
subtype2 22 12 32 1
subtype3 44 20 25 1

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

'RNAseq cHierClus subtypes' versus 'PATHOLOGICSPREAD(M)'

P value = 0.747 (Fisher's exact test)

Table S25.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

nPatients M0 M1
ALL 225 2
subtype1 63 1
subtype2 69 0
subtype3 93 1

Figure S22.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.895 (Fisher's exact test)

Table S26.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 166 62
subtype1 46 18
subtype2 50 20
subtype3 70 24

Figure S23.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq cHierClus subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.408 (Fisher's exact test)

Table S27.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 38 190
subtype1 12 52
subtype2 14 56
subtype3 12 82

Figure S24.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Clustering Approach #4: 'MIRseq CNMF subtypes'

Table S28.  Get Full Table Description of clustering approach #4: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 75 102 81
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.344 (logrank test)

Table S29.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 256 104 0.1 - 142.5 (14.0)
subtype1 74 29 0.1 - 126.1 (11.7)
subtype2 102 39 1.0 - 142.5 (14.6)
subtype3 80 36 1.8 - 108.3 (17.1)

Figure S25.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.613 (ANOVA)

Table S30.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 258 61.0 (12.2)
subtype1 75 59.9 (12.9)
subtype2 102 61.7 (11.2)
subtype3 81 61.2 (12.9)

Figure S26.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.325 (Fisher's exact test)

Table S31.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 188 70
subtype1 59 16
subtype2 74 28
subtype3 55 26

Figure S27.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq CNMF subtypes' versus 'PATHOLOGY.T'

P value = 0.168 (Chi-square test)

Table S32.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2 T3 T4
ALL 17 69 75 90
subtype1 3 21 18 31
subtype2 4 25 33 36
subtype3 10 23 24 23

Figure S28.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

'MIRseq CNMF subtypes' versus 'PATHOLOGY.N'

P value = 0.0273 (Chi-square test)

Table S33.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

nPatients N0 N1 N2 N3
ALL 100 39 100 4
subtype1 31 14 22 3
subtype2 45 9 41 1
subtype3 24 16 37 0

Figure S29.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

'MIRseq CNMF subtypes' versus 'PATHOLOGICSPREAD(M)'

P value = 0.634 (Fisher's exact test)

Table S34.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

nPatients M0 M1
ALL 254 3
subtype1 74 1
subtype2 100 2
subtype3 80 0

Figure S30.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

'MIRseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.698 (Fisher's exact test)

Table S35.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 183 75
subtype1 53 22
subtype2 75 27
subtype3 55 26

Figure S31.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRseq CNMF subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.583 (Fisher's exact test)

Table S36.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 47 211
subtype1 11 64
subtype2 19 83
subtype3 17 64

Figure S32.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Clustering Approach #5: 'MIRseq cHierClus subtypes'

Table S37.  Get Full Table Description of clustering approach #5: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 13 145 100
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.222 (logrank test)

Table S38.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 256 104 0.1 - 142.5 (14.0)
subtype1 13 5 3.7 - 33.1 (13.0)
subtype2 144 54 0.1 - 142.5 (13.4)
subtype3 99 45 1.5 - 129.2 (15.7)

Figure S33.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.695 (ANOVA)

Table S39.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 258 61.0 (12.2)
subtype1 13 62.2 (12.8)
subtype2 145 61.5 (11.4)
subtype3 100 60.2 (13.3)

Figure S34.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.746 (Fisher's exact test)

Table S40.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 188 70
subtype1 10 3
subtype2 108 37
subtype3 70 30

Figure S35.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq cHierClus subtypes' versus 'PATHOLOGY.T'

P value = 0.142 (Chi-square test)

Table S41.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

nPatients T1 T2 T3 T4
ALL 17 69 75 90
subtype1 1 2 6 3
subtype2 5 37 40 57
subtype3 11 30 29 30

Figure S36.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

'MIRseq cHierClus subtypes' versus 'PATHOLOGY.N'

P value = 0.541 (Chi-square test)

Table S42.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

nPatients N0 N1 N2 N3
ALL 100 39 100 4
subtype1 5 2 4 0
subtype2 62 20 49 3
subtype3 33 17 47 1

Figure S37.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

'MIRseq cHierClus subtypes' versus 'PATHOLOGICSPREAD(M)'

P value = 0.379 (Fisher's exact test)

Table S43.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

nPatients M0 M1
ALL 254 3
subtype1 13 0
subtype2 142 3
subtype3 99 0

Figure S38.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGICSPREAD(M)'

'MIRseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.798 (Fisher's exact test)

Table S44.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 183 75
subtype1 9 4
subtype2 105 40
subtype3 69 31

Figure S39.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRseq cHierClus subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.494 (Fisher's exact test)

Table S45.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 47 211
subtype1 3 10
subtype2 23 122
subtype3 21 79

Figure S40.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Methods & Data
Input
  • Cluster data file = HNSC.mergedcluster.txt

  • Clinical data file = HNSC.clin.merged.picked.txt

  • Number of patients = 290

  • Number of clustering approaches = 5

  • Number of selected clinical features = 8

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)