Ovarian Serous Cystadenocarcinoma: Correlation between gene mutation status and selected clinical features
Maintained by TCGA GDAC Team (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 12 genes and 4 clinical features across 316 patients, no significant finding detected with Q value < 0.25.

  • No gene mutations related to clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 12 genes and 4 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, no significant finding detected.

Clinical
Features
Time
to
Death
AGE KARNOFSKY
PERFORMANCE
SCORE
NEOADJUVANT
THERAPY
nMutated (%) nWild-Type logrank test t-test t-test Fisher's exact test
TP53 276 (87%) 40 0.389
(1.00)
0.649
(1.00)
0.585
(1.00)
0.505
(1.00)
SRC 4 (1%) 312 0.197
(1.00)
0.621
(1.00)
0.536
(1.00)
BRCA1 12 (4%) 304 0.957
(1.00)
0.65
(1.00)
1
(1.00)
TBP 4 (1%) 312 0.323
(1.00)
0.191
(1.00)
0.141
(1.00)
CSMD3 18 (6%) 298 0.262
(1.00)
0.61
(1.00)
0.285
(1.00)
0.53
(1.00)
NF1 14 (4%) 302 0.2
(1.00)
0.606
(1.00)
0.478
(1.00)
RB1 9 (3%) 307 0.241
(1.00)
0.204
(1.00)
0.658
(1.00)
C9ORF171 5 (2%) 311 0.895
(1.00)
0.121
(1.00)
0.746
(1.00)
0.591
(1.00)
GABRA6 6 (2%) 310 0.815
(1.00)
0.0121
(0.496)
0.595
(1.00)
CDK12 9 (3%) 307 0.367
(1.00)
0.214
(1.00)
0.0171
(0.684)
0.193
(1.00)
FAT3 19 (6%) 297 0.139
(1.00)
0.743
(1.00)
0.643
(1.00)
0.215
(1.00)
ARHGEF9 5 (2%) 311 0.0717
(1.00)
0.428
(1.00)
1
(1.00)
Methods & Data
Input
  • Mutation data file = OV.mutsig.cluster.txt

  • Clinical data file = OV.clin.merged.picked.txt

  • Number of patients = 316

  • Number of significantly mutated genes = 12

  • Number of selected clinical features = 4

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[3] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)