This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 5 different clustering approaches and 4 clinical features across 66 patients, 2 significant findings detected with P value < 0.05.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death'.
-
CNMF clustering analysis on sequencing-based miR expression data identified 5 subtypes that correlate to 'Time to Death'.
-
Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 2 subtypes that do not correlate to any clinical features.
Table 1. Get Full Table Overview of the association between subtypes identified by 5 different clustering approaches and 4 clinical features. Shown in the table are P values from statistical tests. Thresholded by P value < 0.05, 2 significant findings detected.
Clinical Features |
Time to Death |
AGE | GENDER |
KARNOFSKY PERFORMANCE SCORE |
Statistical Tests | logrank test | t-test | Fisher's exact test | t-test |
METHLYATION CNMF | 0.0846 | 0.754 | 0.187 | 0.713 |
RNAseq CNMF subtypes | 0.0614 | 0.966 | 0.267 | |
RNAseq cHierClus subtypes | 0.0098 | 0.929 | 0.189 | |
MIRseq CNMF subtypes | 0.00309 | 0.52 | 0.927 | 0.573 |
MIRseq cHierClus subtypes | 0.5 | 0.107 | 1 |
Table S1. Get Full Table Description of clustering approach #1: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 18 | 26 | 21 |
P value = 0.0846 (logrank test)
Table S2. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 65 | 24 | 0.4 - 118.9 (7.8) |
subtype1 | 18 | 5 | 1.5 - 118.9 (8.7) |
subtype2 | 26 | 12 | 0.4 - 75.3 (8.3) |
subtype3 | 21 | 7 | 0.5 - 26.1 (7.0) |
Figure S1. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.754 (ANOVA)
Table S3. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 65 | 68.0 (10.5) |
subtype1 | 18 | 66.4 (10.3) |
subtype2 | 26 | 68.8 (10.6) |
subtype3 | 21 | 68.2 (10.7) |
Figure S2. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.187 (Fisher's exact test)
Table S4. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 42 | 23 |
subtype1 | 10 | 8 |
subtype2 | 15 | 11 |
subtype3 | 17 | 4 |
Figure S3. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.713 (ANOVA)
Table S5. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 16 | 79.4 (17.7) |
subtype1 | 4 | 85.0 (5.8) |
subtype2 | 3 | 73.3 (28.9) |
subtype3 | 9 | 78.9 (18.3) |
Figure S4. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

Table S6. Get Full Table Description of clustering approach #2: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 |
---|---|---|
Number of samples | 18 | 14 |
P value = 0.0614 (logrank test)
Table S7. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 32 | 15 | 0.4 - 118.9 (7.8) |
subtype1 | 18 | 6 | 0.5 - 118.9 (7.8) |
subtype2 | 14 | 9 | 0.4 - 26.1 (8.0) |
Figure S5. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.966 (t-test)
Table S8. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 32 | 70.3 (8.9) |
subtype1 | 18 | 70.2 (9.6) |
subtype2 | 14 | 70.4 (8.3) |
Figure S6. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.267 (Fisher's exact test)
Table S9. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 22 | 10 |
subtype1 | 14 | 4 |
subtype2 | 8 | 6 |
Figure S7. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Table S10. Get Full Table Description of clustering approach #3: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 12 | 8 | 12 |
P value = 0.0098 (logrank test)
Table S11. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 32 | 15 | 0.4 - 118.9 (7.8) |
subtype1 | 12 | 7 | 0.4 - 19.0 (8.0) |
subtype2 | 8 | 5 | 0.5 - 19.5 (6.8) |
subtype3 | 12 | 3 | 2.0 - 118.9 (8.7) |
Figure S8. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.929 (ANOVA)
Table S12. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 32 | 70.3 (8.9) |
subtype1 | 12 | 69.5 (8.5) |
subtype2 | 8 | 70.5 (10.1) |
subtype3 | 12 | 70.9 (9.2) |
Figure S9. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.189 (Fisher's exact test)
Table S13. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 22 | 10 |
subtype1 | 6 | 6 |
subtype2 | 7 | 1 |
subtype3 | 9 | 3 |
Figure S10. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Table S14. Get Full Table Description of clustering approach #4: 'MIRseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 12 | 29 | 10 | 3 | 12 |
P value = 0.00309 (logrank test)
Table S15. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 66 | 25 | 0.4 - 118.9 (7.7) |
subtype1 | 12 | 4 | 1.5 - 118.9 (9.5) |
subtype2 | 29 | 14 | 0.4 - 49.2 (8.2) |
subtype3 | 10 | 3 | 0.7 - 36.4 (10.4) |
subtype4 | 3 | 2 | 5.1 - 6.6 (6.2) |
subtype5 | 12 | 2 | 0.5 - 100.5 (6.8) |
Figure S11. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.52 (ANOVA)
Table S16. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 66 | 67.9 (10.4) |
subtype1 | 12 | 70.6 (8.5) |
subtype2 | 29 | 67.7 (10.5) |
subtype3 | 10 | 63.1 (11.7) |
subtype4 | 3 | 71.0 (10.6) |
subtype5 | 12 | 68.8 (11.0) |
Figure S12. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.927 (Chi-square test)
Table S17. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 43 | 23 |
subtype1 | 9 | 3 |
subtype2 | 19 | 10 |
subtype3 | 6 | 4 |
subtype4 | 2 | 1 |
subtype5 | 7 | 5 |
Figure S13. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.573 (ANOVA)
Table S18. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 16 | 79.4 (17.7) |
subtype2 | 8 | 76.2 (22.6) |
subtype3 | 5 | 82.0 (13.0) |
subtype4 | 1 | 90.0 (NA) |
subtype5 | 2 | 80.0 (14.1) |
Figure S14. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

Table S19. Get Full Table Description of clustering approach #5: 'MIRseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 2 | 12 | 52 |
P value = 0.5 (logrank test)
Table S20. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 64 | 24 | 0.4 - 118.9 (8.0) |
subtype2 | 12 | 3 | 1.5 - 118.9 (7.8) |
subtype3 | 52 | 21 | 0.4 - 100.5 (8.0) |
Figure S15. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.107 (t-test)
Table S21. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 64 | 68.1 (10.5) |
subtype2 | 12 | 72.0 (8.5) |
subtype3 | 52 | 67.2 (10.8) |
Figure S16. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 1 (Fisher's exact test)
Table S22. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 41 | 23 |
subtype2 | 8 | 4 |
subtype3 | 33 | 19 |
Figure S17. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

-
Cluster data file = BLCA.mergedcluster.txt
-
Clinical data file = BLCA.clin.merged.picked.txt
-
Number of patients = 66
-
Number of clustering approaches = 5
-
Number of selected clinical features = 4
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R