This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 59 arm-level results and 4 clinical features across 53 patients, one significant finding detected with Q value < 0.25.
-
21q loss cnv correlated to 'AGE'.
Table 1. Get Full Table Overview of the association between significant copy number variation of 59 arm-level results and 4 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, one significant finding detected.
Clinical Features |
Time to Death |
AGE | GENDER |
KARNOFSKY PERFORMANCE SCORE |
||
nCNV (%) | nWild-Type | logrank test | t-test | Fisher's exact test | t-test | |
21q loss | 5 (9%) | 48 |
0.814 (1.00) |
1.75e-05 (0.00336) |
0.638 (1.00) |
|
1p gain | 6 (11%) | 47 |
0.0397 (1.00) |
0.577 (1.00) |
0.0709 (1.00) |
|
1q gain | 10 (19%) | 43 |
0.139 (1.00) |
0.397 (1.00) |
0.287 (1.00) |
|
2p gain | 15 (28%) | 38 |
0.451 (1.00) |
0.956 (1.00) |
0.0302 (1.00) |
|
2q gain | 6 (11%) | 47 |
0.687 (1.00) |
0.38 (1.00) |
0.219 (1.00) |
|
3p gain | 12 (23%) | 41 |
0.322 (1.00) |
0.974 (1.00) |
1 (1.00) |
|
3q gain | 15 (28%) | 38 |
0.0693 (1.00) |
0.477 (1.00) |
0.357 (1.00) |
0.445 (1.00) |
4p gain | 6 (11%) | 47 |
0.473 (1.00) |
0.799 (1.00) |
1 (1.00) |
|
5p gain | 15 (28%) | 38 |
0.478 (1.00) |
0.921 (1.00) |
0.357 (1.00) |
0.68 (1.00) |
5q gain | 7 (13%) | 46 |
0.299 (1.00) |
0.363 (1.00) |
0.686 (1.00) |
|
6p gain | 7 (13%) | 46 |
0.464 (1.00) |
0.665 (1.00) |
1 (1.00) |
|
7p gain | 14 (26%) | 39 |
0.791 (1.00) |
0.189 (1.00) |
1 (1.00) |
|
7q gain | 13 (25%) | 40 |
0.808 (1.00) |
0.489 (1.00) |
0.753 (1.00) |
|
8p gain | 10 (19%) | 43 |
0.71 (1.00) |
0.544 (1.00) |
0.494 (1.00) |
|
8q gain | 21 (40%) | 32 |
0.697 (1.00) |
0.221 (1.00) |
0.779 (1.00) |
0.68 (1.00) |
9p gain | 8 (15%) | 45 |
0.0277 (1.00) |
0.221 (1.00) |
1 (1.00) |
|
9q gain | 8 (15%) | 45 |
0.013 (1.00) |
0.0822 (1.00) |
0.253 (1.00) |
|
10p gain | 13 (25%) | 40 |
0.676 (1.00) |
0.252 (1.00) |
0.52 (1.00) |
|
10q gain | 4 (8%) | 49 |
0.533 (1.00) |
0.348 (1.00) |
1 (1.00) |
|
12p gain | 6 (11%) | 47 |
0.962 (1.00) |
0.953 (1.00) |
1 (1.00) |
|
12q gain | 7 (13%) | 46 |
0.964 (1.00) |
0.654 (1.00) |
0.686 (1.00) |
|
13q gain | 8 (15%) | 45 |
0.926 (1.00) |
0.579 (1.00) |
1 (1.00) |
0.445 (1.00) |
14q gain | 5 (9%) | 48 |
0.853 (1.00) |
0.51 (1.00) |
1 (1.00) |
|
16p gain | 4 (8%) | 49 |
0.0325 (1.00) |
0.689 (1.00) |
0.025 (1.00) |
|
16q gain | 8 (15%) | 45 |
0.0811 (1.00) |
0.599 (1.00) |
0.0544 (1.00) |
|
17p gain | 4 (8%) | 49 |
0.478 (1.00) |
0.988 (1.00) |
1 (1.00) |
|
17q gain | 11 (21%) | 42 |
0.431 (1.00) |
0.414 (1.00) |
1 (1.00) |
|
18p gain | 6 (11%) | 47 |
0.458 (1.00) |
0.178 (1.00) |
0.219 (1.00) |
|
18q gain | 3 (6%) | 50 |
0.076 (1.00) |
0.825 (1.00) |
0.563 (1.00) |
|
19p gain | 4 (8%) | 49 |
0.918 (1.00) |
0.0851 (1.00) |
0.295 (1.00) |
|
19q gain | 13 (25%) | 40 |
0.0927 (1.00) |
0.612 (1.00) |
0.345 (1.00) |
0.445 (1.00) |
20p gain | 15 (28%) | 38 |
0.776 (1.00) |
0.276 (1.00) |
0.124 (1.00) |
|
20q gain | 18 (34%) | 35 |
0.618 (1.00) |
0.485 (1.00) |
0.155 (1.00) |
|
21q gain | 13 (25%) | 40 |
0.237 (1.00) |
0.164 (1.00) |
1 (1.00) |
0.68 (1.00) |
22q gain | 4 (8%) | 49 |
0.0748 (1.00) |
0.408 (1.00) |
0.633 (1.00) |
|
2q loss | 7 (13%) | 46 |
0.748 (1.00) |
0.635 (1.00) |
0.431 (1.00) |
0.886 (1.00) |
3p loss | 5 (9%) | 48 |
0.819 (1.00) |
0.123 (1.00) |
1 (1.00) |
|
4p loss | 9 (17%) | 44 |
0.478 (1.00) |
0.408 (1.00) |
0.14 (1.00) |
|
4q loss | 10 (19%) | 43 |
0.46 (1.00) |
0.743 (1.00) |
0.724 (1.00) |
|
5p loss | 3 (6%) | 50 |
0.158 (1.00) |
0.688 (1.00) |
0.0657 (1.00) |
|
5q loss | 11 (21%) | 42 |
0.251 (1.00) |
0.353 (1.00) |
0.168 (1.00) |
0.68 (1.00) |
6p loss | 6 (11%) | 47 |
0.947 (1.00) |
0.0354 (1.00) |
0.683 (1.00) |
|
6q loss | 10 (19%) | 43 |
0.0829 (1.00) |
0.978 (1.00) |
0.724 (1.00) |
|
8p loss | 12 (23%) | 41 |
0.309 (1.00) |
0.0495 (1.00) |
1 (1.00) |
|
9p loss | 18 (34%) | 35 |
0.83 (1.00) |
0.747 (1.00) |
0.557 (1.00) |
0.912 (1.00) |
9q loss | 15 (28%) | 38 |
0.746 (1.00) |
0.427 (1.00) |
0.065 (1.00) |
0.616 (1.00) |
10p loss | 8 (15%) | 45 |
0.204 (1.00) |
0.991 (1.00) |
0.253 (1.00) |
|
10q loss | 8 (15%) | 45 |
0.242 (1.00) |
0.526 (1.00) |
0.705 (1.00) |
|
11p loss | 23 (43%) | 30 |
0.715 (1.00) |
0.776 (1.00) |
0.415 (1.00) |
0.109 (1.00) |
11q loss | 13 (25%) | 40 |
0.731 (1.00) |
0.429 (1.00) |
0.52 (1.00) |
0.261 (1.00) |
13q loss | 9 (17%) | 44 |
0.805 (1.00) |
0.636 (1.00) |
0.72 (1.00) |
|
14q loss | 11 (21%) | 42 |
0.84 (1.00) |
0.718 (1.00) |
0.327 (1.00) |
|
15q loss | 9 (17%) | 44 |
0.222 (1.00) |
0.521 (1.00) |
0.464 (1.00) |
0.636 (1.00) |
16p loss | 8 (15%) | 45 |
0.122 (1.00) |
0.938 (1.00) |
0.445 (1.00) |
|
16q loss | 3 (6%) | 50 |
0.647 (1.00) |
0.516 (1.00) |
1 (1.00) |
|
17p loss | 18 (34%) | 35 |
0.0275 (1.00) |
0.115 (1.00) |
0.777 (1.00) |
0.557 (1.00) |
18p loss | 6 (11%) | 47 |
0.198 (1.00) |
0.781 (1.00) |
0.219 (1.00) |
|
18q loss | 16 (30%) | 37 |
0.00271 (0.518) |
0.54 (1.00) |
0.225 (1.00) |
0.445 (1.00) |
22q loss | 9 (17%) | 44 |
0.295 (1.00) |
0.212 (1.00) |
0.464 (1.00) |
P value = 1.75e-05 (t-test), Q value = 0.0034
Table S1. Gene #58: '21q loss mutation analysis' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 53 | 68.6 (10.1) |
21Q LOSS MUTATED | 5 | 58.8 (2.8) |
21Q LOSS WILD-TYPE | 48 | 69.6 (10.1) |
Figure S1. Get High-res Image Gene #58: '21q loss mutation analysis' versus Clinical Feature #2: 'AGE'

-
Mutation data file = broad_values_by_arm.mutsig.cluster.txt
-
Clinical data file = BLCA.clin.merged.picked.txt
-
Number of patients = 53
-
Number of significantly arm-level cnvs = 59
-
Number of selected clinical features = 4
-
Exclude genes that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.