This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 5 different clustering approaches and 8 clinical features across 311 patients, 3 significant findings detected with P value < 0.05.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'GENDER' and 'PATHOLOGY.T'.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.
-
CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 4 subtypes that correlate to 'NEOADJUVANT.THERAPY'.
Table 1. Get Full Table Overview of the association between subtypes identified by 5 different clustering approaches and 8 clinical features. Shown in the table are P values from statistical tests. Thresholded by P value < 0.05, 3 significant findings detected.
Clinical Features |
Statistical Tests |
METHLYATION CNMF |
RNAseq CNMF subtypes |
RNAseq cHierClus subtypes |
MIRseq CNMF subtypes |
MIRseq cHierClus subtypes |
Time to Death | logrank test | 0.235 | 0.199 | 0.0722 | 0.665 | 0.145 |
AGE | ANOVA | 0.071 | 0.559 | 0.289 | 0.723 | 0.688 |
GENDER | Fisher's exact test | 0.00615 | 0.739 | 0.187 | 0.0643 | 0.637 |
PATHOLOGY T | Chi-square test | 0.0407 | 0.676 | 0.43 | 0.121 | 0.395 |
PATHOLOGY N | Chi-square test | 0.549 | 0.614 | 0.0869 | 0.109 | 0.191 |
TUMOR STAGE | Chi-square test | 0.569 | 0.644 | 0.638 | 0.451 | 0.321 |
RADIATIONS RADIATION REGIMENINDICATION | Fisher's exact test | 0.65 | 0.76 | 0.719 | 0.533 | 0.551 |
NEOADJUVANT THERAPY | Fisher's exact test | 0.922 | 0.624 | 0.176 | 0.689 | 0.0179 |
Table S1. Get Full Table Description of clustering approach #1: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 94 | 101 | 97 |
P value = 0.235 (logrank test)
Table S2. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 290 | 121 | 0.1 - 210.9 (14.2) |
subtype1 | 93 | 41 | 0.1 - 126.1 (13.0) |
subtype2 | 101 | 39 | 0.1 - 142.5 (16.6) |
subtype3 | 96 | 41 | 0.2 - 210.9 (13.3) |
Figure S1. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.071 (ANOVA)
Table S3. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 292 | 61.3 (12.2) |
subtype1 | 94 | 59.0 (13.2) |
subtype2 | 101 | 61.9 (10.8) |
subtype3 | 97 | 62.9 (12.3) |
Figure S2. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.00615 (Fisher's exact test)
Table S4. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 82 | 210 |
subtype1 | 20 | 74 |
subtype2 | 23 | 78 |
subtype3 | 39 | 58 |
Figure S3. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

P value = 0.0407 (Chi-square test)
Table S5. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 21 | 76 | 61 | 99 |
subtype1 | 3 | 22 | 25 | 38 |
subtype2 | 5 | 26 | 22 | 26 |
subtype3 | 13 | 28 | 14 | 35 |
Figure S4. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T'

P value = 0.549 (Chi-square test)
Table S6. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 96 | 31 | 97 | 4 |
subtype1 | 38 | 9 | 31 | 0 |
subtype2 | 28 | 8 | 31 | 2 |
subtype3 | 30 | 14 | 35 | 2 |
Figure S5. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N'

P value = 0.569 (Chi-square test)
Table S7. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #6: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 15 | 46 | 40 | 151 |
subtype1 | 3 | 16 | 15 | 54 |
subtype2 | 3 | 15 | 13 | 45 |
subtype3 | 9 | 15 | 12 | 52 |
Figure S6. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #6: 'TUMOR.STAGE'

P value = 0.65 (Fisher's exact test)
Table S8. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 78 | 214 |
subtype1 | 22 | 72 |
subtype2 | 28 | 73 |
subtype3 | 28 | 69 |
Figure S7. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.922 (Fisher's exact test)
Table S9. Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 48 | 244 |
subtype1 | 15 | 79 |
subtype2 | 18 | 83 |
subtype3 | 15 | 82 |
Figure S8. Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Table S10. Get Full Table Description of clustering approach #2: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 73 | 66 | 90 |
P value = 0.199 (logrank test)
Table S11. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 228 | 96 | 0.1 - 210.9 (14.2) |
subtype1 | 72 | 33 | 0.1 - 210.9 (15.5) |
subtype2 | 66 | 31 | 1.5 - 142.5 (13.1) |
subtype3 | 90 | 32 | 0.1 - 135.3 (13.4) |
Figure S9. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.559 (ANOVA)
Table S12. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 229 | 61.1 (12.3) |
subtype1 | 73 | 60.3 (13.2) |
subtype2 | 66 | 60.6 (12.5) |
subtype3 | 90 | 62.2 (11.5) |
Figure S10. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.739 (Fisher's exact test)
Table S13. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 59 | 170 |
subtype1 | 19 | 54 |
subtype2 | 19 | 47 |
subtype3 | 21 | 69 |
Figure S11. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.676 (Chi-square test)
Table S14. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 12 | 55 | 47 | 82 |
subtype1 | 2 | 18 | 14 | 32 |
subtype2 | 6 | 17 | 15 | 22 |
subtype3 | 4 | 20 | 18 | 28 |
Figure S12. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

P value = 0.614 (Chi-square test)
Table S15. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 73 | 23 | 76 | 3 |
subtype1 | 27 | 9 | 23 | 0 |
subtype2 | 20 | 6 | 29 | 1 |
subtype3 | 26 | 8 | 24 | 2 |
Figure S13. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

P value = 0.644 (Chi-square test)
Table S16. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 9 | 34 | 29 | 121 |
subtype1 | 2 | 11 | 11 | 42 |
subtype2 | 5 | 10 | 6 | 38 |
subtype3 | 2 | 13 | 12 | 41 |
Figure S14. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'

P value = 0.76 (Fisher's exact test)
Table S17. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 62 | 167 |
subtype1 | 18 | 55 |
subtype2 | 20 | 46 |
subtype3 | 24 | 66 |
Figure S15. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.624 (Fisher's exact test)
Table S18. Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 38 | 191 |
subtype1 | 10 | 63 |
subtype2 | 13 | 53 |
subtype3 | 15 | 75 |
Figure S16. Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Table S19. Get Full Table Description of clustering approach #3: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 72 | 91 | 66 |
P value = 0.0722 (logrank test)
Table S20. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 228 | 96 | 0.1 - 210.9 (14.2) |
subtype1 | 72 | 35 | 1.5 - 142.5 (13.2) |
subtype2 | 90 | 37 | 0.1 - 210.9 (15.5) |
subtype3 | 66 | 24 | 0.1 - 135.3 (12.6) |
Figure S17. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.289 (ANOVA)
Table S21. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 229 | 61.1 (12.3) |
subtype1 | 72 | 60.2 (13.6) |
subtype2 | 91 | 60.5 (12.0) |
subtype3 | 66 | 63.2 (11.2) |
Figure S18. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.187 (Fisher's exact test)
Table S22. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 59 | 170 |
subtype1 | 24 | 48 |
subtype2 | 19 | 72 |
subtype3 | 16 | 50 |
Figure S19. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.43 (Chi-square test)
Table S23. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 12 | 55 | 47 | 82 |
subtype1 | 7 | 18 | 17 | 26 |
subtype2 | 3 | 20 | 18 | 39 |
subtype3 | 2 | 17 | 12 | 17 |
Figure S20. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

P value = 0.0869 (Chi-square test)
Table S24. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 73 | 23 | 76 | 3 |
subtype1 | 20 | 8 | 33 | 1 |
subtype2 | 38 | 11 | 24 | 0 |
subtype3 | 15 | 4 | 19 | 2 |
Figure S21. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

P value = 0.638 (Chi-square test)
Table S25. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 9 | 34 | 29 | 121 |
subtype1 | 5 | 11 | 7 | 44 |
subtype2 | 3 | 13 | 15 | 49 |
subtype3 | 1 | 10 | 7 | 28 |
Figure S22. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'

P value = 0.719 (Fisher's exact test)
Table S26. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 62 | 167 |
subtype1 | 21 | 51 |
subtype2 | 22 | 69 |
subtype3 | 19 | 47 |
Figure S23. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.176 (Fisher's exact test)
Table S27. Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 38 | 191 |
subtype1 | 15 | 57 |
subtype2 | 10 | 81 |
subtype3 | 13 | 53 |
Figure S24. Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Table S28. Get Full Table Description of clustering approach #4: 'MIRseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 83 | 131 | 94 |
P value = 0.665 (logrank test)
Table S29. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 306 | 123 | 0.1 - 210.9 (14.9) |
subtype1 | 82 | 30 | 0.1 - 210.9 (12.1) |
subtype2 | 131 | 52 | 0.1 - 142.5 (14.3) |
subtype3 | 93 | 41 | 1.8 - 126.1 (17.8) |
Figure S25. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.723 (ANOVA)
Table S30. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 308 | 61.1 (12.1) |
subtype1 | 83 | 60.4 (12.5) |
subtype2 | 131 | 61.7 (11.4) |
subtype3 | 94 | 60.9 (12.7) |
Figure S26. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0643 (Fisher's exact test)
Table S31. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 86 | 222 |
subtype1 | 16 | 67 |
subtype2 | 37 | 94 |
subtype3 | 33 | 61 |
Figure S27. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.121 (Chi-square test)
Table S32. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 24 | 78 | 62 | 103 |
subtype1 | 5 | 23 | 11 | 30 |
subtype2 | 7 | 26 | 29 | 47 |
subtype3 | 12 | 29 | 22 | 26 |
Figure S28. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

P value = 0.109 (Chi-square test)
Table S33. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 99 | 32 | 101 | 5 |
subtype1 | 30 | 8 | 21 | 2 |
subtype2 | 44 | 9 | 41 | 3 |
subtype3 | 25 | 15 | 39 | 0 |
Figure S29. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

P value = 0.451 (Chi-square test)
Table S34. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 17 | 46 | 41 | 158 |
subtype1 | 4 | 15 | 8 | 41 |
subtype2 | 4 | 16 | 18 | 68 |
subtype3 | 9 | 15 | 15 | 49 |
Figure S30. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'

P value = 0.533 (Fisher's exact test)
Table S35. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 77 | 231 |
subtype1 | 21 | 62 |
subtype2 | 29 | 102 |
subtype3 | 27 | 67 |
Figure S31. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.689 (Fisher's exact test)
Table S36. Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 48 | 260 |
subtype1 | 11 | 72 |
subtype2 | 20 | 111 |
subtype3 | 17 | 77 |
Figure S32. Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

Table S37. Get Full Table Description of clustering approach #5: 'MIRseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Number of samples | 13 | 12 | 167 | 116 |
P value = 0.145 (logrank test)
Table S38. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 306 | 123 | 0.1 - 210.9 (14.9) |
subtype1 | 13 | 5 | 0.2 - 56.7 (12.0) |
subtype2 | 12 | 5 | 9.0 - 84.4 (12.8) |
subtype3 | 166 | 61 | 0.1 - 210.9 (14.0) |
subtype4 | 115 | 52 | 0.5 - 156.5 (17.1) |
Figure S33. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.688 (ANOVA)
Table S39. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 308 | 61.1 (12.1) |
subtype1 | 13 | 58.4 (13.2) |
subtype2 | 12 | 61.0 (11.8) |
subtype3 | 167 | 61.8 (11.5) |
subtype4 | 116 | 60.4 (12.9) |
Figure S34. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.637 (Fisher's exact test)
Table S40. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 86 | 222 |
subtype1 | 4 | 9 |
subtype2 | 4 | 8 |
subtype3 | 42 | 125 |
subtype4 | 36 | 80 |
Figure S35. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

P value = 0.395 (Chi-square test)
Table S41. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 24 | 78 | 62 | 103 |
subtype1 | 2 | 5 | 2 | 3 |
subtype2 | 0 | 3 | 2 | 5 |
subtype3 | 8 | 38 | 30 | 60 |
subtype4 | 14 | 32 | 28 | 35 |
Figure S36. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T'

P value = 0.191 (Chi-square test)
Table S42. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'
nPatients | N0 | N1 | N2 | N3 |
---|---|---|---|---|
ALL | 99 | 32 | 101 | 5 |
subtype1 | 8 | 1 | 3 | 0 |
subtype2 | 5 | 0 | 5 | 0 |
subtype3 | 54 | 17 | 42 | 4 |
subtype4 | 32 | 14 | 51 | 1 |
Figure S37. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N'

P value = 0.321 (Chi-square test)
Table S43. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'
nPatients | I | II | III | IV |
---|---|---|---|---|
ALL | 17 | 46 | 41 | 158 |
subtype1 | 2 | 4 | 2 | 4 |
subtype2 | 0 | 1 | 1 | 8 |
subtype3 | 5 | 24 | 23 | 80 |
subtype4 | 10 | 17 | 15 | 66 |
Figure S38. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'TUMOR.STAGE'

P value = 0.551 (Fisher's exact test)
Table S44. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 77 | 231 |
subtype1 | 3 | 10 |
subtype2 | 4 | 8 |
subtype3 | 37 | 130 |
subtype4 | 33 | 83 |
Figure S39. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #7: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.0179 (Fisher's exact test)
Table S45. Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 48 | 260 |
subtype1 | 0 | 13 |
subtype2 | 3 | 9 |
subtype3 | 19 | 148 |
subtype4 | 26 | 90 |
Figure S40. Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #8: 'NEOADJUVANT.THERAPY'

-
Cluster data file = HNSC.mergedcluster.txt
-
Clinical data file = HNSC.clin.merged.picked.txt
-
Number of patients = 311
-
Number of clustering approaches = 5
-
Number of selected clinical features = 8
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R