Correlation between molecular cancer subtypes and selected clinical features
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 5 different clustering approaches and 4 clinical features across 124 patients, 2 significant findings detected with P value < 0.05.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 9 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'NEOADJUVANT.THERAPY'.

  • CNMF clustering analysis on sequencing-based miR expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 5 different clustering approaches and 4 clinical features. Shown in the table are P values from statistical tests. Thresholded by P value < 0.05, 2 significant findings detected.

Clinical
Features
Time
to
Death
AGE RADIATIONS
RADIATION
REGIMENINDICATION
NEOADJUVANT
THERAPY
Statistical Tests logrank test ANOVA Fisher's exact test Fisher's exact test
METHLYATION CNMF 1 0.00334 1 0.315
RNAseq CNMF subtypes 1 0.057 0.61 0.252
RNAseq cHierClus subtypes 1 0.0522 1 0.0124
MIRseq CNMF subtypes 1 0.306 1 0.249
MIRseq cHierClus subtypes 1 0.138 1 0.145
Clustering Approach #1: 'METHLYATION CNMF'

Table S1.  Get Full Table Description of clustering approach #1: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 36 41 47
'METHLYATION CNMF' versus 'Time to Death'

P value = 1 (logrank test)

Table S2.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 124 1 0.3 - 66.0 (19.1)
subtype1 36 0 0.3 - 65.9 (21.0)
subtype2 41 0 1.0 - 62.4 (17.6)
subtype3 47 1 1.0 - 66.0 (19.5)

Figure S1.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.00334 (ANOVA)

Table S3.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 124 61.2 (6.6)
subtype1 36 62.9 (5.7)
subtype2 41 58.4 (7.0)
subtype3 47 62.3 (6.2)

Figure S2.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test)

Table S4.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 119
subtype1 1 35
subtype2 2 39
subtype3 2 45

Figure S3.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'METHLYATION CNMF' versus 'NEOADJUVANT.THERAPY'

P value = 0.315 (Fisher's exact test)

Table S5.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 4 120
subtype1 1 35
subtype2 0 41
subtype3 3 44

Figure S4.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Clustering Approach #2: 'RNAseq CNMF subtypes'

Table S6.  Get Full Table Description of clustering approach #2: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4 5 6 7 8 9
Number of samples 7 3 7 7 8 5 4 8 4
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 1 (logrank test)

Table S7.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 53 0 1.0 - 65.9 (21.8)
subtype1 7 0 3.0 - 47.4 (15.9)
subtype2 3 0 1.0 - 44.0 (7.0)
subtype3 7 0 2.0 - 35.0 (24.0)
subtype4 7 0 1.0 - 65.9 (19.5)
subtype5 8 0 1.0 - 34.9 (13.9)
subtype6 5 0 12.0 - 27.9 (26.4)
subtype7 4 0 1.0 - 33.0 (11.3)
subtype8 8 0 13.1 - 46.1 (22.2)
subtype9 4 0 17.5 - 54.9 (35.2)

Figure S5.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.057 (ANOVA)

Table S8.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 53 61.3 (7.2)
subtype1 7 64.6 (4.7)
subtype2 3 67.3 (6.4)
subtype3 7 65.9 (8.3)
subtype4 7 58.9 (4.5)
subtype5 8 55.8 (6.3)
subtype6 5 63.6 (8.6)
subtype7 4 62.2 (9.1)
subtype8 8 57.9 (6.7)
subtype9 4 61.5 (4.7)

Figure S6.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.61 (Chi-square test)

Table S9.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 4 49
subtype1 1 6
subtype2 1 2
subtype3 0 7
subtype4 1 6
subtype5 1 7
subtype6 0 5
subtype7 0 4
subtype8 0 8
subtype9 0 4

Figure S7.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq CNMF subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.252 (Chi-square test)

Table S10.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 3 50
subtype1 0 7
subtype2 0 3
subtype3 2 5
subtype4 1 6
subtype5 0 8
subtype6 0 5
subtype7 0 4
subtype8 0 8
subtype9 0 4

Figure S8.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Clustering Approach #3: 'RNAseq cHierClus subtypes'

Table S11.  Get Full Table Description of clustering approach #3: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 11 10 6 26
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 1 (logrank test)

Table S12.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 53 0 1.0 - 65.9 (21.8)
subtype1 11 0 1.0 - 47.4 (15.9)
subtype2 10 0 1.0 - 65.9 (14.8)
subtype3 6 0 1.0 - 35.0 (24.0)
subtype4 26 0 1.0 - 54.9 (23.5)

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.0522 (ANOVA)

Table S13.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 53 61.3 (7.2)
subtype1 11 62.0 (5.7)
subtype2 10 60.1 (8.3)
subtype3 6 68.5 (2.4)
subtype4 26 59.8 (7.3)

Figure S10.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test)

Table S14.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 4 49
subtype1 1 10
subtype2 1 9
subtype3 0 6
subtype4 2 24

Figure S11.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq cHierClus subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.0124 (Fisher's exact test)

Table S15.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 3 50
subtype1 0 11
subtype2 1 9
subtype3 2 4
subtype4 0 26

Figure S12.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Clustering Approach #4: 'MIRseq CNMF subtypes'

Table S16.  Get Full Table Description of clustering approach #4: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 18 28 19 16
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 1 (logrank test)

Table S17.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 81 0 0.9 - 65.9 (23.0)
subtype1 18 0 1.0 - 65.9 (20.8)
subtype2 28 0 0.9 - 39.3 (21.2)
subtype3 19 0 11.7 - 54.9 (19.9)
subtype4 16 0 8.0 - 47.4 (26.2)

Figure S13.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.306 (ANOVA)

Table S18.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 81 61.1 (6.7)
subtype1 18 62.7 (6.7)
subtype2 28 61.6 (6.3)
subtype3 19 58.7 (7.1)
subtype4 16 61.4 (6.7)

Figure S14.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test)

Table S19.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 76
subtype1 1 17
subtype2 2 26
subtype3 1 18
subtype4 1 15

Figure S15.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRseq CNMF subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.249 (Fisher's exact test)

Table S20.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 3 78
subtype1 0 18
subtype2 3 25
subtype3 0 19
subtype4 0 16

Figure S16.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Clustering Approach #5: 'MIRseq cHierClus subtypes'

Table S21.  Get Full Table Description of clustering approach #5: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 15 32 34
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 1 (logrank test)

Table S22.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 81 0 0.9 - 65.9 (23.0)
subtype1 15 0 3.0 - 47.4 (25.9)
subtype2 32 0 0.9 - 65.9 (22.5)
subtype3 34 0 1.0 - 54.9 (19.7)

Figure S17.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.138 (ANOVA)

Table S23.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 81 61.1 (6.7)
subtype1 15 61.7 (6.1)
subtype2 32 62.6 (6.9)
subtype3 34 59.4 (6.6)

Figure S18.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test)

Table S24.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 76
subtype1 1 14
subtype2 2 30
subtype3 2 32

Figure S19.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRseq cHierClus subtypes' versus 'NEOADJUVANT.THERAPY'

P value = 0.145 (Fisher's exact test)

Table S25.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

nPatients NO YES
ALL 3 78
subtype1 0 15
subtype2 3 29
subtype3 0 34

Figure S20.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Methods & Data
Input
  • Cluster data file = PRAD.mergedcluster.txt

  • Clinical data file = PRAD.clin.merged.picked.txt

  • Number of patients = 124

  • Number of clustering approaches = 5

  • Number of selected clinical features = 4

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)