This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 71 arm-level results and 4 clinical features across 88 patients, one significant finding detected with Q value < 0.25.
-
21q loss cnv correlated to 'AGE'.
Table 1. Get Full Table Overview of the association between significant copy number variation of 71 arm-level results and 4 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, one significant finding detected.
|
Clinical Features |
Time to Death |
AGE | GENDER |
KARNOFSKY PERFORMANCE SCORE |
||
| nCNV (%) | nWild-Type | logrank test | t-test | Fisher's exact test | t-test | |
| 21q loss | 9 (10%) | 79 |
0.401 (1.00) |
0.000475 (0.126) |
1 (1.00) |
0.00389 (1.00) |
| 1p gain | 11 (12%) | 77 |
0.324 (1.00) |
0.178 (1.00) |
0.301 (1.00) |
0.471 (1.00) |
| 1q gain | 20 (23%) | 68 |
0.122 (1.00) |
0.0138 (1.00) |
0.783 (1.00) |
0.111 (1.00) |
| 2p gain | 18 (20%) | 70 |
0.453 (1.00) |
0.938 (1.00) |
0.00335 (0.88) |
0.875 (1.00) |
| 2q gain | 5 (6%) | 83 |
0.673 (1.00) |
0.0323 (1.00) |
0.64 (1.00) |
0.875 (1.00) |
| 3p gain | 19 (22%) | 69 |
0.617 (1.00) |
0.97 (1.00) |
1 (1.00) |
0.554 (1.00) |
| 3q gain | 24 (27%) | 64 |
0.179 (1.00) |
0.0759 (1.00) |
0.442 (1.00) |
0.992 (1.00) |
| 4p gain | 8 (9%) | 80 |
0.0819 (1.00) |
0.847 (1.00) |
0.426 (1.00) |
|
| 4q gain | 4 (5%) | 84 |
0.905 (1.00) |
0.241 (1.00) |
1 (1.00) |
|
| 5p gain | 26 (30%) | 62 |
0.901 (1.00) |
0.433 (1.00) |
0.801 (1.00) |
0.0757 (1.00) |
| 5q gain | 13 (15%) | 75 |
0.53 (1.00) |
0.956 (1.00) |
0.329 (1.00) |
0.486 (1.00) |
| 6p gain | 5 (6%) | 83 |
0.116 (1.00) |
0.894 (1.00) |
0.64 (1.00) |
|
| 6q gain | 3 (3%) | 85 |
0.124 (1.00) |
0.836 (1.00) |
0.55 (1.00) |
|
| 7p gain | 29 (33%) | 59 |
0.371 (1.00) |
0.471 (1.00) |
1 (1.00) |
0.174 (1.00) |
| 7q gain | 28 (32%) | 60 |
0.625 (1.00) |
0.966 (1.00) |
0.321 (1.00) |
0.112 (1.00) |
| 8p gain | 14 (16%) | 74 |
0.931 (1.00) |
0.18 (1.00) |
0.536 (1.00) |
0.835 (1.00) |
| 8q gain | 31 (35%) | 57 |
0.734 (1.00) |
0.403 (1.00) |
0.629 (1.00) |
0.558 (1.00) |
| 9p gain | 12 (14%) | 76 |
0.0337 (1.00) |
0.0411 (1.00) |
0.0957 (1.00) |
0.808 (1.00) |
| 9q gain | 11 (12%) | 77 |
0.07 (1.00) |
0.0776 (1.00) |
1 (1.00) |
0.789 (1.00) |
| 10p gain | 19 (22%) | 69 |
0.496 (1.00) |
0.388 (1.00) |
0.782 (1.00) |
0.835 (1.00) |
| 10q gain | 5 (6%) | 83 |
0.474 (1.00) |
0.474 (1.00) |
0.64 (1.00) |
|
| 11p gain | 4 (5%) | 84 |
0.696 (1.00) |
0.254 (1.00) |
0.308 (1.00) |
0.0907 (1.00) |
| 11q gain | 3 (3%) | 85 |
0.674 (1.00) |
0.481 (1.00) |
0.55 (1.00) |
|
| 12p gain | 18 (20%) | 70 |
0.965 (1.00) |
0.766 (1.00) |
0.251 (1.00) |
0.333 (1.00) |
| 12q gain | 14 (16%) | 74 |
0.293 (1.00) |
0.817 (1.00) |
0.0553 (1.00) |
0.267 (1.00) |
| 13q gain | 16 (18%) | 72 |
0.278 (1.00) |
0.354 (1.00) |
1 (1.00) |
0.447 (1.00) |
| 14q gain | 8 (9%) | 80 |
0.573 (1.00) |
0.729 (1.00) |
0.697 (1.00) |
0.46 (1.00) |
| 15q gain | 4 (5%) | 84 |
0.152 (1.00) |
0.811 (1.00) |
1 (1.00) |
|
| 16p gain | 8 (9%) | 80 |
0.00254 (0.671) |
0.415 (1.00) |
0.243 (1.00) |
|
| 16q gain | 10 (11%) | 78 |
0.0415 (1.00) |
0.287 (1.00) |
0.0622 (1.00) |
|
| 17p gain | 6 (7%) | 82 |
0.466 (1.00) |
0.084 (1.00) |
0.366 (1.00) |
|
| 17q gain | 14 (16%) | 74 |
0.763 (1.00) |
0.746 (1.00) |
0.754 (1.00) |
|
| 18p gain | 15 (17%) | 73 |
0.65 (1.00) |
0.866 (1.00) |
0.769 (1.00) |
0.978 (1.00) |
| 18q gain | 6 (7%) | 82 |
0.0272 (1.00) |
0.798 (1.00) |
1 (1.00) |
|
| 19p gain | 9 (10%) | 79 |
0.505 (1.00) |
0.833 (1.00) |
1 (1.00) |
0.471 (1.00) |
| 19q gain | 18 (20%) | 70 |
0.278 (1.00) |
0.829 (1.00) |
0.165 (1.00) |
0.058 (1.00) |
| 20p gain | 36 (41%) | 52 |
0.423 (1.00) |
0.411 (1.00) |
0.0989 (1.00) |
0.895 (1.00) |
| 20q gain | 37 (42%) | 51 |
0.485 (1.00) |
0.911 (1.00) |
0.817 (1.00) |
0.474 (1.00) |
| 21q gain | 17 (19%) | 71 |
0.222 (1.00) |
0.147 (1.00) |
0.771 (1.00) |
0.65 (1.00) |
| 22q gain | 9 (10%) | 79 |
0.0766 (1.00) |
0.603 (1.00) |
0.265 (1.00) |
0.808 (1.00) |
| Xq gain | 5 (6%) | 83 |
0.452 (1.00) |
0.826 (1.00) |
0.64 (1.00) |
|
| 2p loss | 5 (6%) | 83 |
0.703 (1.00) |
0.302 (1.00) |
1 (1.00) |
0.396 (1.00) |
| 2q loss | 11 (12%) | 77 |
0.0407 (1.00) |
0.195 (1.00) |
0.492 (1.00) |
0.396 (1.00) |
| 3p loss | 7 (8%) | 81 |
0.911 (1.00) |
0.605 (1.00) |
0.671 (1.00) |
|
| 4p loss | 14 (16%) | 74 |
0.702 (1.00) |
0.888 (1.00) |
0.754 (1.00) |
0.0355 (1.00) |
| 4q loss | 15 (17%) | 73 |
0.894 (1.00) |
0.68 (1.00) |
1 (1.00) |
0.0355 (1.00) |
| 5p loss | 9 (10%) | 79 |
0.32 (1.00) |
0.319 (1.00) |
0.448 (1.00) |
0.00428 (1.00) |
| 5q loss | 19 (22%) | 69 |
0.462 (1.00) |
0.829 (1.00) |
1 (1.00) |
0.75 (1.00) |
| 6p loss | 11 (12%) | 77 |
0.137 (1.00) |
0.602 (1.00) |
1 (1.00) |
0.00428 (1.00) |
| 6q loss | 17 (19%) | 71 |
0.404 (1.00) |
0.924 (1.00) |
0.771 (1.00) |
0.00367 (0.962) |
| 8p loss | 27 (31%) | 61 |
0.175 (1.00) |
0.623 (1.00) |
0.62 (1.00) |
0.356 (1.00) |
| 8q loss | 3 (3%) | 85 |
0.548 (1.00) |
0.318 (1.00) |
0.222 (1.00) |
|
| 9p loss | 28 (32%) | 60 |
0.69 (1.00) |
0.392 (1.00) |
0.0265 (1.00) |
0.792 (1.00) |
| 9q loss | 25 (28%) | 63 |
0.542 (1.00) |
0.674 (1.00) |
0.075 (1.00) |
0.823 (1.00) |
| 10p loss | 13 (15%) | 75 |
0.381 (1.00) |
0.894 (1.00) |
1 (1.00) |
0.0355 (1.00) |
| 10q loss | 14 (16%) | 74 |
0.418 (1.00) |
0.153 (1.00) |
0.754 (1.00) |
0.00428 (1.00) |
| 11p loss | 31 (35%) | 57 |
0.849 (1.00) |
0.0972 (1.00) |
0.814 (1.00) |
0.348 (1.00) |
| 11q loss | 24 (27%) | 64 |
0.879 (1.00) |
0.814 (1.00) |
0.607 (1.00) |
0.541 (1.00) |
| 13q loss | 13 (15%) | 75 |
0.972 (1.00) |
0.854 (1.00) |
0.058 (1.00) |
0.00428 (1.00) |
| 14q loss | 13 (15%) | 75 |
0.342 (1.00) |
0.641 (1.00) |
0.747 (1.00) |
0.789 (1.00) |
| 15q loss | 12 (14%) | 76 |
0.356 (1.00) |
0.302 (1.00) |
1 (1.00) |
0.942 (1.00) |
| 16p loss | 11 (12%) | 77 |
0.207 (1.00) |
0.172 (1.00) |
0.161 (1.00) |
0.058 (1.00) |
| 16q loss | 10 (11%) | 78 |
0.813 (1.00) |
0.138 (1.00) |
0.166 (1.00) |
0.125 (1.00) |
| 17p loss | 29 (33%) | 59 |
0.109 (1.00) |
0.283 (1.00) |
1 (1.00) |
0.448 (1.00) |
| 17q loss | 4 (5%) | 84 |
0.777 (1.00) |
0.56 (1.00) |
1 (1.00) |
|
| 18p loss | 13 (15%) | 75 |
0.11 (1.00) |
0.0922 (1.00) |
0.527 (1.00) |
0.699 (1.00) |
| 18q loss | 22 (25%) | 66 |
0.0249 (1.00) |
0.0358 (1.00) |
0.11 (1.00) |
0.69 (1.00) |
| 19p loss | 4 (5%) | 84 |
0.795 (1.00) |
0.631 (1.00) |
0.583 (1.00) |
|
| 19q loss | 3 (3%) | 85 |
0.708 (1.00) |
0.793 (1.00) |
1 (1.00) |
|
| 20p loss | 3 (3%) | 85 |
0.833 (1.00) |
0.49 (1.00) |
1 (1.00) |
|
| 22q loss | 17 (19%) | 71 |
0.449 (1.00) |
0.686 (1.00) |
0.381 (1.00) |
0.396 (1.00) |
P value = 0.000475 (t-test), Q value = 0.13
Table S1. Gene #70: '21q loss mutation analysis' versus Clinical Feature #2: 'AGE'
| nPatients | Mean (Std.Dev) | |
|---|---|---|
| ALL | 87 | 67.2 (11.0) |
| 21Q LOSS MUTATED | 9 | 57.7 (6.1) |
| 21Q LOSS WILD-TYPE | 78 | 68.3 (11.0) |
Figure S1. Get High-res Image Gene #70: '21q loss mutation analysis' versus Clinical Feature #2: 'AGE'
-
Mutation data file = broad_values_by_arm.mutsig.cluster.txt
-
Clinical data file = BLCA.clin.merged.picked.txt
-
Number of patients = 88
-
Number of significantly arm-level cnvs = 71
-
Number of selected clinical features = 4
-
Exclude genes that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.