This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 4 different clustering approaches and 4 clinical features across 32 patients, one significant finding detected with P value < 0.05.
-
3 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death'.
-
CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.
-
Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.
Table 1. Get Full Table Overview of the association between subtypes identified by 4 different clustering approaches and 4 clinical features. Shown in the table are P values from statistical tests. Thresholded by P value < 0.05, one significant finding detected.
Clinical Features |
Time to Death |
AGE |
RADIATIONS RADIATION REGIMENINDICATION |
NEOADJUVANT THERAPY |
Statistical Tests | logrank test | ANOVA | Fisher's exact test | Fisher's exact test |
CN CNMF | 0.317 | 0.647 | 0.801 | 0.801 |
METHLYATION CNMF | 0.0358 | 0.618 | 0.721 | 0.397 |
MIRseq CNMF subtypes | 0.956 | 0.42 | 1 | 0.66 |
MIRseq cHierClus subtypes | 0.183 | 0.259 | 0.856 | 1 |
Table S1. Get Full Table Description of clustering approach #1: 'CN CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 10 | 4 | 12 |
P value = 0.317 (logrank test)
Table S2. Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 25 | 1 | 0.1 - 95.1 (2.7) |
subtype1 | 9 | 0 | 0.3 - 70.8 (2.7) |
subtype2 | 4 | 0 | 1.2 - 69.9 (3.6) |
subtype3 | 12 | 1 | 0.1 - 95.1 (3.8) |
Figure S1. Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.647 (ANOVA)
Table S3. Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 26 | 48.5 (11.8) |
subtype1 | 10 | 46.8 (10.4) |
subtype2 | 4 | 53.5 (6.9) |
subtype3 | 12 | 48.2 (14.3) |
Figure S2. Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.801 (Fisher's exact test)
Table S4. Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 4 | 22 |
subtype1 | 1 | 9 |
subtype2 | 1 | 3 |
subtype3 | 2 | 10 |
Figure S3. Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.801 (Fisher's exact test)
Table S5. Clustering Approach #1: 'CN CNMF' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 4 | 22 |
subtype1 | 1 | 9 |
subtype2 | 1 | 3 |
subtype3 | 2 | 10 |
Figure S4. Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Table S6. Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 12 | 17 | 3 |
P value = 0.0358 (logrank test)
Table S7. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 31 | 4 | 0.1 - 101.8 (5.8) |
subtype1 | 12 | 0 | 0.6 - 101.8 (16.2) |
subtype2 | 16 | 4 | 0.1 - 95.1 (4.3) |
subtype3 | 3 | 0 | 1.2 - 5.8 (2.2) |
Figure S5. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.618 (ANOVA)
Table S8. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 32 | 49.9 (12.7) |
subtype1 | 12 | 52.8 (11.2) |
subtype2 | 17 | 48.4 (13.5) |
subtype3 | 3 | 47.0 (16.5) |
Figure S6. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.721 (Fisher's exact test)
Table S9. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 8 | 24 |
subtype1 | 2 | 10 |
subtype2 | 5 | 12 |
subtype3 | 1 | 2 |
Figure S7. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.397 (Fisher's exact test)
Table S10. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 8 | 24 |
subtype1 | 2 | 10 |
subtype2 | 6 | 11 |
subtype3 | 0 | 3 |
Figure S8. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Table S11. Get Full Table Description of clustering approach #3: 'MIRseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 11 | 14 | 7 |
P value = 0.956 (logrank test)
Table S12. Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 31 | 4 | 0.1 - 101.8 (5.8) |
subtype1 | 11 | 2 | 0.1 - 95.1 (12.4) |
subtype2 | 13 | 2 | 0.6 - 101.8 (5.5) |
subtype3 | 7 | 0 | 1.0 - 6.0 (1.2) |
Figure S9. Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.42 (ANOVA)
Table S13. Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 32 | 49.9 (12.7) |
subtype1 | 11 | 47.5 (12.6) |
subtype2 | 14 | 53.3 (11.9) |
subtype3 | 7 | 46.9 (14.6) |
Figure S10. Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 1 (Fisher's exact test)
Table S14. Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 8 | 24 |
subtype1 | 3 | 8 |
subtype2 | 3 | 11 |
subtype3 | 2 | 5 |
Figure S11. Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.66 (Fisher's exact test)
Table S15. Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 8 | 24 |
subtype1 | 4 | 7 |
subtype2 | 3 | 11 |
subtype3 | 1 | 6 |
Figure S12. Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

Table S16. Get Full Table Description of clustering approach #4: 'MIRseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 3 | 18 | 11 |
P value = 0.183 (logrank test)
Table S17. Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 31 | 4 | 0.1 - 101.8 (5.8) |
subtype1 | 3 | 0 | 1.2 - 6.0 (2.2) |
subtype2 | 18 | 4 | 0.3 - 101.8 (7.3) |
subtype3 | 10 | 0 | 0.1 - 95.1 (4.8) |
Figure S13. Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.259 (ANOVA)
Table S18. Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 32 | 49.9 (12.7) |
subtype1 | 3 | 43.0 (13.7) |
subtype2 | 18 | 53.1 (13.6) |
subtype3 | 11 | 46.5 (10.2) |
Figure S14. Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.856 (Fisher's exact test)
Table S19. Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'
nPatients | NO | YES |
---|---|---|
ALL | 8 | 24 |
subtype1 | 1 | 2 |
subtype2 | 5 | 13 |
subtype3 | 2 | 9 |
Figure S15. Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test)
Table S20. Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'
nPatients | NO | YES |
---|---|---|
ALL | 8 | 24 |
subtype1 | 1 | 2 |
subtype2 | 4 | 14 |
subtype3 | 3 | 8 |
Figure S16. Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'NEOADJUVANT.THERAPY'

-
Cluster data file = CESC.mergedcluster.txt
-
Clinical data file = CESC.clin.merged.picked.txt
-
Number of patients = 32
-
Number of clustering approaches = 4
-
Number of selected clinical features = 4
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.