This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 72 arm-level results and 3 clinical features across 126 patients, no significant finding detected with Q value < 0.25.
-
No arm-level cnvs related to clinical features.
Table 1. Get Full Table Overview of the association between significant copy number variation of 72 arm-level results and 3 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, no significant finding detected.
|
Clinical Features |
Time to Death |
AGE | GENDER | ||
| nCNV (%) | nWild-Type | logrank test | t-test | Fisher's exact test | |
| 1p gain | 19 (15%) | 107 |
0.0672 (1.00) |
0.341 (1.00) |
0.612 (1.00) |
| 1q gain | 43 (34%) | 83 |
0.0198 (1.00) |
0.672 (1.00) |
0.847 (1.00) |
| 2p gain | 12 (10%) | 114 |
0.208 (1.00) |
||
| 2q gain | 10 (8%) | 116 |
0.324 (1.00) |
||
| 3p gain | 14 (11%) | 112 |
0.769 (1.00) |
||
| 3q gain | 18 (14%) | 108 |
0.262 (1.00) |
0.928 (1.00) |
0.443 (1.00) |
| 4p gain | 12 (10%) | 114 |
0.471 (1.00) |
0.0842 (1.00) |
1 (1.00) |
| 4q gain | 10 (8%) | 116 |
0.745 (1.00) |
||
| 5p gain | 14 (11%) | 112 |
0.377 (1.00) |
||
| 5q gain | 3 (2%) | 123 |
0.299 (1.00) |
||
| 6p gain | 43 (34%) | 83 |
0.372 (1.00) |
0.862 (1.00) |
0.243 (1.00) |
| 6q gain | 6 (5%) | 120 |
0.668 (1.00) |
||
| 7p gain | 58 (46%) | 68 |
0.15 (1.00) |
0.879 (1.00) |
0.853 (1.00) |
| 7q gain | 56 (44%) | 70 |
0.49 (1.00) |
0.774 (1.00) |
0.582 (1.00) |
| 8p gain | 26 (21%) | 100 |
0.701 (1.00) |
0.362 (1.00) |
0.361 (1.00) |
| 8q gain | 39 (31%) | 87 |
0.41 (1.00) |
0.508 (1.00) |
0.427 (1.00) |
| 11p gain | 7 (6%) | 119 |
0.421 (1.00) |
||
| 11q gain | 4 (3%) | 122 |
0.296 (1.00) |
||
| 12p gain | 10 (8%) | 116 |
0.324 (1.00) |
||
| 12q gain | 5 (4%) | 121 |
0.652 (1.00) |
||
| 13q gain | 21 (17%) | 105 |
0.818 (1.00) |
0.53 (1.00) |
0.808 (1.00) |
| 14q gain | 11 (9%) | 115 |
1 (1.00) |
||
| 15q gain | 16 (13%) | 110 |
1 (1.00) |
||
| 16p gain | 9 (7%) | 117 |
0.723 (1.00) |
||
| 16q gain | 8 (6%) | 118 |
1 (1.00) |
||
| 17p gain | 10 (8%) | 116 |
1 (1.00) |
||
| 17q gain | 16 (13%) | 110 |
0.583 (1.00) |
||
| 18p gain | 15 (12%) | 111 |
0.436 (1.00) |
0.925 (1.00) |
0.781 (1.00) |
| 18q gain | 8 (6%) | 118 |
0.436 (1.00) |
0.925 (1.00) |
1 (1.00) |
| 19p gain | 7 (6%) | 119 |
0.705 (1.00) |
||
| 19q gain | 10 (8%) | 116 |
0.168 (1.00) |
||
| 20p gain | 38 (30%) | 88 |
0.686 (1.00) |
0.845 (1.00) |
0.547 (1.00) |
| 20q gain | 46 (37%) | 80 |
0.686 (1.00) |
0.845 (1.00) |
0.566 (1.00) |
| 21q gain | 15 (12%) | 111 |
0.705 (1.00) |
0.603 (1.00) |
0.403 (1.00) |
| 22q gain | 34 (27%) | 92 |
0.795 (1.00) |
0.671 (1.00) |
0.303 (1.00) |
| Xq gain | 3 (2%) | 123 |
0.299 (1.00) |
||
| 1p loss | 10 (8%) | 116 |
0.745 (1.00) |
||
| 1q loss | 5 (4%) | 121 |
1 (1.00) |
||
| 2p loss | 11 (9%) | 115 |
1 (1.00) |
||
| 2q loss | 11 (9%) | 115 |
0.528 (1.00) |
||
| 3p loss | 10 (8%) | 116 |
1 (1.00) |
||
| 3q loss | 10 (8%) | 116 |
0.802 (1.00) |
0.529 (1.00) |
0.168 (1.00) |
| 4p loss | 10 (8%) | 116 |
0.168 (1.00) |
||
| 4q loss | 11 (9%) | 115 |
0.0965 (1.00) |
||
| 5p loss | 17 (13%) | 109 |
0.598 (1.00) |
0.892 (1.00) |
1 (1.00) |
| 5q loss | 28 (22%) | 98 |
0.598 (1.00) |
0.892 (1.00) |
0.661 (1.00) |
| 6p loss | 12 (10%) | 114 |
0.353 (1.00) |
||
| 6q loss | 53 (42%) | 73 |
0.00289 (0.376) |
0.332 (1.00) |
0.353 (1.00) |
| 8p loss | 14 (11%) | 112 |
0.254 (1.00) |
||
| 9p loss | 73 (58%) | 53 |
0.19 (1.00) |
0.146 (1.00) |
0.262 (1.00) |
| 9q loss | 56 (44%) | 70 |
0.19 (1.00) |
0.0632 (1.00) |
0.0166 (1.00) |
| 10p loss | 55 (44%) | 71 |
0.128 (1.00) |
0.496 (1.00) |
0.0928 (1.00) |
| 10q loss | 61 (48%) | 65 |
0.368 (1.00) |
0.0147 (1.00) |
0.197 (1.00) |
| 11p loss | 32 (25%) | 94 |
0.891 (1.00) |
0.0674 (1.00) |
0.0104 (1.00) |
| 11q loss | 35 (28%) | 91 |
0.554 (1.00) |
0.4 (1.00) |
0.0996 (1.00) |
| 12p loss | 8 (6%) | 118 |
0.462 (1.00) |
||
| 12q loss | 13 (10%) | 113 |
0.546 (1.00) |
||
| 13q loss | 19 (15%) | 107 |
0.31 (1.00) |
||
| 14q loss | 33 (26%) | 93 |
0.166 (1.00) |
0.599 (1.00) |
0.528 (1.00) |
| 15q loss | 10 (8%) | 116 |
1 (1.00) |
||
| 16p loss | 10 (8%) | 116 |
0.802 (1.00) |
0.529 (1.00) |
0.495 (1.00) |
| 16q loss | 23 (18%) | 103 |
0.928 (1.00) |
0.916 (1.00) |
0.813 (1.00) |
| 17p loss | 29 (23%) | 97 |
1 (1.00) |
||
| 17q loss | 13 (10%) | 113 |
1 (1.00) |
||
| 18p loss | 24 (19%) | 102 |
1 (1.00) |
||
| 18q loss | 23 (18%) | 103 |
0.813 (1.00) |
||
| 19p loss | 10 (8%) | 116 |
0.00476 (0.614) |
||
| 19q loss | 12 (10%) | 114 |
0.0297 (1.00) |
||
| 20p loss | 5 (4%) | 121 |
0.652 (1.00) |
||
| 21q loss | 17 (13%) | 109 |
0.788 (1.00) |
||
| 22q loss | 8 (6%) | 118 |
1 (1.00) |
||
| Xq loss | 3 (2%) | 123 |
0.553 (1.00) |
-
Mutation data file = broad_values_by_arm.mutsig.cluster.txt
-
Clinical data file = SKCM.clin.merged.picked.txt
-
Number of patients = 126
-
Number of significantly arm-level cnvs = 72
-
Number of selected clinical features = 3
-
Exclude genes that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.