Breast Invasive Carcinoma: Correlation between molecular cancer subtypes and selected clinical features
(primary solid tumor cohort)
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 4 clinical features across 866 patients, 7 significant findings detected with P value < 0.05 and Q value < 0.25.

  • CNMF clustering analysis on array-based mRNA expression data identified 3 subtypes that correlate to 'AGE'.

  • Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that correlate to 'AGE'.

  • 5 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes correlate to 'GENDER'.

  • 6 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE'.

  • CNMF clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that correlate to 'AGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'AGE'.

  • CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that correlate to 'Time to Death'.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 4 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 7 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER RADIATIONS
RADIATION
REGIMENINDICATION
Statistical Tests logrank test ANOVA Fisher's exact test Fisher's exact test
mRNA CNMF subtypes 0.23
(1.00)
0.000889
(0.0329)
0.33
(1.00)
0.635
(1.00)
mRNA cHierClus subtypes 0.65
(1.00)
0.000537
(0.0204)
0.323
(1.00)
0.16
(1.00)
CN CNMF 0.254
(1.00)
0.0503
(1.00)
0.000119
(0.00476)
0.233
(1.00)
METHLYATION CNMF 0.235
(1.00)
0.00191
(0.0667)
0.0441
(1.00)
0.204
(1.00)
RPPA CNMF subtypes 0.0438
(1.00)
0.0191
(0.591)
0.058
(1.00)
0.944
(1.00)
RPPA cHierClus subtypes 0.238
(1.00)
0.000121
(0.00476)
0.187
(1.00)
0.726
(1.00)
RNAseq CNMF subtypes 0.258
(1.00)
0.012
(0.385)
0.0682
(1.00)
0.458
(1.00)
RNAseq cHierClus subtypes 0.234
(1.00)
0.00176
(0.0633)
0.0578
(1.00)
0.169
(1.00)
MIRseq CNMF subtypes 0.00629
(0.214)
0.0286
(0.858)
0.683
(1.00)
0.424
(1.00)
MIRseq cHierClus subtypes 0.186
(1.00)
0.00927
(0.306)
0.359
(1.00)
0.687
(1.00)
Clustering Approach #1: 'mRNA CNMF subtypes'

Table S1.  Get Full Table Description of clustering approach #1: 'mRNA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 268 93 166
'mRNA CNMF subtypes' versus 'Time to Death'

P value = 0.23 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 495 65 0.1 - 223.4 (24.2)
subtype1 257 30 0.1 - 223.4 (20.4)
subtype2 88 10 0.3 - 140.5 (35.6)
subtype3 150 25 0.1 - 211.5 (22.3)

Figure S1.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA CNMF subtypes' versus 'AGE'

P value = 0.000889 (ANOVA), Q value = 0.033

Table S3.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 527 57.9 (13.3)
subtype1 268 59.9 (13.1)
subtype2 93 54.7 (13.6)
subtype3 166 56.4 (12.9)

Figure S2.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'mRNA CNMF subtypes' versus 'GENDER'

P value = 0.33 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 521 6
subtype1 263 5
subtype2 93 0
subtype3 165 1

Figure S3.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.635 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 147 380
subtype1 70 198
subtype2 27 66
subtype3 50 116

Figure S4.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #2: 'mRNA cHierClus subtypes'

Table S6.  Get Full Table Description of clustering approach #2: 'mRNA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 127 264 136
'mRNA cHierClus subtypes' versus 'Time to Death'

P value = 0.65 (logrank test), Q value = 1

Table S7.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 495 65 0.1 - 223.4 (24.2)
subtype1 116 15 0.1 - 211.5 (21.9)
subtype2 245 36 0.1 - 223.4 (23.1)
subtype3 134 14 0.1 - 157.4 (26.5)

Figure S5.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA cHierClus subtypes' versus 'AGE'

P value = 0.000537 (ANOVA), Q value = 0.02

Table S8.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 527 57.9 (13.3)
subtype1 127 55.0 (12.7)
subtype2 264 60.0 (13.2)
subtype3 136 56.4 (13.4)

Figure S6.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'mRNA cHierClus subtypes' versus 'GENDER'

P value = 0.323 (Fisher's exact test), Q value = 1

Table S9.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 521 6
subtype1 127 0
subtype2 259 5
subtype3 135 1

Figure S7.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.16 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 147 380
subtype1 43 84
subtype2 65 199
subtype3 39 97

Figure S8.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #3: 'CN CNMF'

Table S11.  Get Full Table Description of clustering approach #3: 'CN CNMF'

Cluster Labels 1 2 3 4 5
Number of samples 316 72 196 204 55
'CN CNMF' versus 'Time to Death'

P value = 0.254 (logrank test), Q value = 1

Table S12.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 785 94 0.0 - 223.4 (18.4)
subtype1 295 31 0.0 - 223.4 (20.2)
subtype2 71 6 0.0 - 189.0 (19.0)
subtype3 179 21 0.1 - 162.0 (16.5)
subtype4 189 25 0.0 - 211.5 (17.7)
subtype5 51 11 0.7 - 220.9 (21.5)

Figure S9.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

'CN CNMF' versus 'AGE'

P value = 0.0503 (ANOVA), Q value = 1

Table S13.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 842 58.5 (13.2)
subtype1 315 58.1 (12.9)
subtype2 72 61.1 (11.3)
subtype3 196 59.0 (14.6)
subtype4 204 57.0 (13.0)
subtype5 55 61.7 (12.3)

Figure S10.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'

'CN CNMF' versus 'GENDER'

P value = 0.000119 (Chi-square test), Q value = 0.0048

Table S14.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 834 9
subtype1 316 0
subtype2 71 1
subtype3 188 8
subtype4 204 0
subtype5 55 0

Figure S11.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

'CN CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.233 (Chi-square test), Q value = 1

Table S15.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 197 646
subtype1 63 253
subtype2 19 53
subtype3 43 153
subtype4 56 148
subtype5 16 39

Figure S12.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #4: 'METHLYATION CNMF'

Table S16.  Get Full Table Description of clustering approach #4: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4 5 6
Number of samples 96 138 78 125 33 82
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.235 (logrank test), Q value = 1

Table S17.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 523 61 0.0 - 223.4 (17.9)
subtype1 91 14 0.2 - 211.5 (19.2)
subtype2 130 13 0.3 - 223.4 (13.7)
subtype3 76 12 0.0 - 109.9 (17.7)
subtype4 118 12 0.1 - 194.3 (19.0)
subtype5 32 3 0.1 - 157.4 (20.4)
subtype6 76 7 0.0 - 130.2 (25.6)

Figure S13.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.00191 (ANOVA), Q value = 0.067

Table S18.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 551 57.8 (13.1)
subtype1 96 56.3 (13.1)
subtype2 138 59.6 (12.6)
subtype3 78 62.3 (11.7)
subtype4 125 55.4 (14.4)
subtype5 33 55.7 (13.7)
subtype6 81 56.5 (11.7)

Figure S14.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.0441 (Chi-square test), Q value = 1

Table S19.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 546 6
subtype1 96 0
subtype2 137 1
subtype3 76 2
subtype4 124 1
subtype5 31 2
subtype6 82 0

Figure S15.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.204 (Chi-square test), Q value = 1

Table S20.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 136 416
subtype1 29 67
subtype2 32 106
subtype3 16 62
subtype4 37 88
subtype5 4 29
subtype6 18 64

Figure S16.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #5: 'RPPA CNMF subtypes'

Table S21.  Get Full Table Description of clustering approach #5: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 151 134 123
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.0438 (logrank test), Q value = 1

Table S22.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 380 44 0.1 - 189.0 (24.5)
subtype1 135 22 0.1 - 186.4 (24.3)
subtype2 130 11 0.2 - 146.5 (17.4)
subtype3 115 11 0.3 - 189.0 (28.5)

Figure S17.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'AGE'

P value = 0.0191 (ANOVA), Q value = 0.59

Table S23.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 408 57.9 (13.1)
subtype1 151 56.3 (13.1)
subtype2 134 60.4 (13.8)
subtype3 123 57.0 (11.9)

Figure S18.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.058 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 403 5
subtype1 151 0
subtype2 130 4
subtype3 122 1

Figure S19.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.944 (Fisher's exact test), Q value = 1

Table S25.  Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 124 284
subtype1 46 105
subtype2 42 92
subtype3 36 87

Figure S20.  Get High-res Image Clustering Approach #5: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #6: 'RPPA cHierClus subtypes'

Table S26.  Get Full Table Description of clustering approach #6: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 135 162 111
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.238 (logrank test), Q value = 1

Table S27.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 380 44 0.1 - 189.0 (24.5)
subtype1 120 18 0.1 - 189.0 (23.5)
subtype2 151 17 0.2 - 129.7 (19.9)
subtype3 109 9 0.2 - 173.0 (25.3)

Figure S21.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'AGE'

P value = 0.000121 (ANOVA), Q value = 0.0048

Table S28.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 408 57.9 (13.1)
subtype1 135 54.3 (13.0)
subtype2 162 60.7 (13.4)
subtype3 111 58.0 (11.7)

Figure S22.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.187 (Fisher's exact test), Q value = 1

Table S29.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 403 5
subtype1 135 0
subtype2 158 4
subtype3 110 1

Figure S23.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.726 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 124 284
subtype1 40 95
subtype2 47 115
subtype3 37 74

Figure S24.  Get High-res Image Clustering Approach #6: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #7: 'RNAseq CNMF subtypes'

Table S31.  Get Full Table Description of clustering approach #7: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 239 155 440
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.258 (logrank test), Q value = 1

Table S32.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 777 94 0.0 - 223.4 (18.9)
subtype1 221 33 0.0 - 211.5 (19.3)
subtype2 149 12 0.3 - 194.3 (25.4)
subtype3 407 49 0.0 - 223.4 (17.0)

Figure S25.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.012 (ANOVA), Q value = 0.38

Table S33.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 833 58.2 (13.2)
subtype1 239 57.2 (12.8)
subtype2 154 56.2 (12.4)
subtype3 440 59.4 (13.5)

Figure S26.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.0682 (Fisher's exact test), Q value = 1

Table S34.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 825 9
subtype1 239 0
subtype2 154 1
subtype3 432 8

Figure S27.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.458 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 197 637
subtype1 57 182
subtype2 42 113
subtype3 98 342

Figure S28.  Get High-res Image Clustering Approach #7: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #8: 'RNAseq cHierClus subtypes'

Table S36.  Get Full Table Description of clustering approach #8: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 417 218 199
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.234 (logrank test), Q value = 1

Table S37.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 777 94 0.0 - 223.4 (18.9)
subtype1 384 47 0.0 - 223.4 (16.3)
subtype2 210 19 0.1 - 194.3 (25.5)
subtype3 183 28 0.0 - 211.5 (20.0)

Figure S29.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.00176 (ANOVA), Q value = 0.063

Table S38.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 833 58.2 (13.2)
subtype1 417 59.8 (13.3)
subtype2 217 56.4 (13.0)
subtype3 199 56.7 (12.8)

Figure S30.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.0578 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 825 9
subtype1 409 8
subtype2 217 1
subtype3 199 0

Figure S31.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.169 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 197 637
subtype1 87 330
subtype2 58 160
subtype3 52 147

Figure S32.  Get High-res Image Clustering Approach #8: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #9: 'MIRseq CNMF subtypes'

Table S41.  Get Full Table Description of clustering approach #9: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 185 411 242
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.00629 (logrank test), Q value = 0.21

Table S42.  Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 779 95 0.0 - 223.4 (18.9)
subtype1 178 19 0.4 - 159.1 (21.0)
subtype2 381 37 0.0 - 223.4 (17.9)
subtype3 220 39 0.0 - 211.5 (19.2)

Figure S33.  Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.0286 (ANOVA), Q value = 0.86

Table S43.  Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 837 58.4 (13.3)
subtype1 184 57.3 (12.7)
subtype2 411 59.7 (13.7)
subtype3 242 57.1 (12.8)

Figure S34.  Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.683 (Fisher's exact test), Q value = 1

Table S44.  Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 829 9
subtype1 184 1
subtype2 405 6
subtype3 240 2

Figure S35.  Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.424 (Fisher's exact test), Q value = 1

Table S45.  Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 193 645
subtype1 37 148
subtype2 102 309
subtype3 54 188

Figure S36.  Get High-res Image Clustering Approach #9: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #10: 'MIRseq cHierClus subtypes'

Table S46.  Get Full Table Description of clustering approach #10: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 205 268 365
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.186 (logrank test), Q value = 1

Table S47.  Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 779 95 0.0 - 223.4 (18.9)
subtype1 192 30 0.0 - 211.5 (19.7)
subtype2 237 31 0.1 - 223.4 (17.8)
subtype3 350 34 0.0 - 177.4 (18.6)

Figure S37.  Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.00927 (ANOVA), Q value = 0.31

Table S48.  Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 837 58.4 (13.3)
subtype1 205 56.9 (12.7)
subtype2 268 60.4 (14.3)
subtype3 364 57.8 (12.7)

Figure S38.  Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.359 (Fisher's exact test), Q value = 1

Table S49.  Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 829 9
subtype1 204 1
subtype2 263 5
subtype3 362 3

Figure S39.  Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.687 (Fisher's exact test), Q value = 1

Table S50.  Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 193 645
subtype1 49 156
subtype2 65 203
subtype3 79 286

Figure S40.  Get High-res Image Clustering Approach #10: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Methods & Data
Input
  • Cluster data file = BRCA-TP.mergedcluster.txt

  • Clinical data file = BRCA-TP.clin.merged.picked.txt

  • Number of patients = 866

  • Number of clustering approaches = 10

  • Number of selected clinical features = 4

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)