Acute Myeloid Leukemia: Correlation between molecular cancer subtypes and selected clinical features
(primary blood tumor (peripheral) cohort)
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 5 different clustering approaches and 3 clinical features across 197 patients, 2 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 6 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death' and 'AGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 5 different clustering approaches and 3 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 2 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER
Statistical Tests logrank test ANOVA Fisher's exact test
METHLYATION CNMF 2.96e-05
(0.000415)
9.48e-09
(1.42e-07)
0.77
(1.00)
RNAseq CNMF subtypes 0.308
(1.00)
0.39
(1.00)
0.312
(1.00)
RNAseq cHierClus subtypes 0.683
(1.00)
0.0292
(0.359)
1
(1.00)
MIRseq CNMF subtypes 0.0276
(0.359)
0.221
(1.00)
0.797
(1.00)
MIRseq cHierClus subtypes 0.0358
(0.393)
0.077
(0.77)
0.767
(1.00)
Clustering Approach #1: 'METHLYATION CNMF'

Table S1.  Get Full Table Description of clustering approach #1: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4 5 6
Number of samples 48 18 26 40 48 14
'METHLYATION CNMF' versus 'Time to Death'

P value = 2.96e-05 (logrank test), Q value = 0.00041

Table S2.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 169 106 0.9 - 94.1 (12.0)
subtype1 42 30 1.0 - 69.0 (8.0)
subtype2 16 4 0.9 - 84.0 (36.0)
subtype3 24 17 1.0 - 56.1 (15.5)
subtype4 36 15 1.0 - 94.1 (19.5)
subtype5 40 31 0.9 - 52.0 (10.5)
subtype6 11 9 1.0 - 42.0 (10.0)

Figure S1.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 9.48e-09 (ANOVA), Q value = 1.4e-07

Table S3.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 194 55.1 (16.0)
subtype1 48 56.6 (14.2)
subtype2 18 47.4 (14.8)
subtype3 26 61.3 (13.3)
subtype4 40 45.1 (16.9)
subtype5 48 63.8 (12.0)
subtype6 14 47.4 (15.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.77 (Chi-square test), Q value = 1

Table S4.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 89 105
subtype1 24 24
subtype2 10 8
subtype3 13 13
subtype4 18 22
subtype5 19 29
subtype6 5 9

Figure S3.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #2: 'RNAseq CNMF subtypes'

Table S5.  Get Full Table Description of clustering approach #2: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 74 57 48
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.308 (logrank test), Q value = 1

Table S6.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 157 97 0.9 - 94.1 (12.0)
subtype1 67 39 1.0 - 94.1 (16.1)
subtype2 50 32 0.9 - 75.1 (11.0)
subtype3 40 26 0.9 - 62.0 (9.5)

Figure S4.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.39 (ANOVA), Q value = 1

Table S7.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 179 55.0 (15.9)
subtype1 74 53.8 (17.1)
subtype2 57 57.4 (13.6)
subtype3 48 54.0 (16.7)

Figure S5.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.312 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 84 95
subtype1 33 41
subtype2 24 33
subtype3 27 21

Figure S6.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #3: 'RNAseq cHierClus subtypes'

Table S9.  Get Full Table Description of clustering approach #3: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2
Number of samples 61 118
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.683 (logrank test), Q value = 1

Table S10.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 157 97 0.9 - 94.1 (12.0)
subtype1 52 33 0.9 - 75.1 (11.5)
subtype2 105 64 0.9 - 94.1 (12.9)

Figure S7.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.0292 (t-test), Q value = 0.36

Table S11.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 179 55.0 (15.9)
subtype1 61 58.3 (12.8)
subtype2 118 53.3 (17.1)

Figure S8.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 1 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 84 95
subtype1 29 32
subtype2 55 63

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #4: 'MIRseq CNMF subtypes'

Table S13.  Get Full Table Description of clustering approach #4: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 86 40 61
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.0276 (logrank test), Q value = 0.36

Table S14.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 163 101 0.9 - 94.1 (12.0)
subtype1 75 54 0.9 - 73.0 (10.0)
subtype2 36 18 0.9 - 62.0 (14.5)
subtype3 52 29 1.0 - 94.1 (15.0)

Figure S10.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.221 (ANOVA), Q value = 1

Table S15.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 187 55.1 (16.0)
subtype1 86 56.1 (14.5)
subtype2 40 57.2 (14.5)
subtype3 61 52.2 (18.7)

Figure S11.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.797 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 86 101
subtype1 39 47
subtype2 17 23
subtype3 30 31

Figure S12.  Get High-res Image Clustering Approach #4: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #5: 'MIRseq cHierClus subtypes'

Table S17.  Get Full Table Description of clustering approach #5: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 38 82 67
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0358 (logrank test), Q value = 0.39

Table S18.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 163 101 0.9 - 94.1 (12.0)
subtype1 34 16 0.9 - 62.0 (14.5)
subtype2 71 50 0.9 - 69.0 (10.0)
subtype3 58 35 1.0 - 94.1 (15.0)

Figure S13.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.077 (ANOVA), Q value = 0.77

Table S19.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 187 55.1 (16.0)
subtype1 38 58.2 (14.2)
subtype2 82 56.4 (13.6)
subtype3 67 51.6 (19.1)

Figure S14.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.767 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 86 101
subtype1 16 22
subtype2 40 42
subtype3 30 37

Figure S15.  Get High-res Image Clustering Approach #5: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Methods & Data
Input
  • Cluster data file = LAML-TB.mergedcluster.txt

  • Clinical data file = LAML-TP.clin.merged.picked.txt

  • Number of patients = 197

  • Number of clustering approaches = 5

  • Number of selected clinical features = 3

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[8] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)