Brain Lower Grade Glioma: Correlation between molecular cancer subtypes and selected clinical features
(primary solid tumor cohort)
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 6 clinical features across 179 patients, 12 significant findings detected with P value < 0.05 and Q value < 0.25.

  • CNMF clustering analysis on array-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes correlate to 'HISTOLOGICAL.TYPE'.

  • 4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death',  'AGE',  'HISTOLOGICAL.TYPE', and 'RADIATIONS.RADIATION.REGIMENINDICATION'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death',  'HISTOLOGICAL.TYPE', and 'RADIATIONS.RADIATION.REGIMENINDICATION'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death',  'AGE', and 'HISTOLOGICAL.TYPE'.

  • CNMF clustering analysis on sequencing-based miR expression data identified 7 subtypes that correlate to 'HISTOLOGICAL.TYPE'.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 6 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 12 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER KARNOFSKY
PERFORMANCE
SCORE
HISTOLOGICAL
TYPE
RADIATIONS
RADIATION
REGIMENINDICATION
Statistical Tests logrank test ANOVA Fisher's exact test ANOVA Chi-square test Fisher's exact test
mRNA CNMF subtypes 0.247
(1.00)
0.326
(1.00)
0.101
(1.00)
0.441
(1.00)
0.0226
(0.699)
0.384
(1.00)
mRNA cHierClus subtypes 0.31
(1.00)
0.467
(1.00)
0.172
(1.00)
0.441
(1.00)
0.0136
(0.463)
0.757
(1.00)
CN CNMF 0.0131
(0.458)
0.162
(1.00)
0.0354
(1.00)
0.0523
(1.00)
0.000129
(0.00555)
0.0365
(1.00)
METHLYATION CNMF 1.19e-05
(0.00055)
2.76e-05
(0.00121)
0.0183
(0.584)
0.872
(1.00)
1.55e-11
(7.43e-10)
0.000172
(0.00723)
RNAseq CNMF subtypes 0.000486
(0.0194)
0.0677
(1.00)
0.294
(1.00)
0.204
(1.00)
4.12e-06
(0.000193)
0.00271
(0.103)
RNAseq cHierClus subtypes 0.000316
(0.013)
0.0059
(0.218)
0.127
(1.00)
0.361
(1.00)
1.22e-05
(0.00055)
0.0151
(0.497)
MIRseq CNMF subtypes 0.324
(1.00)
0.00901
(0.324)
0.0591
(1.00)
0.294
(1.00)
0.000491
(0.0194)
0.13
(1.00)
MIRseq cHierClus subtypes 0.0326
(0.978)
0.804
(1.00)
0.693
(1.00)
0.852
(1.00)
0.0496
(1.00)
0.0781
(1.00)
Clustering Approach #1: 'mRNA CNMF subtypes'

Table S1.  Get Full Table Description of clustering approach #1: 'mRNA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 9 10 8
'mRNA CNMF subtypes' versus 'Time to Death'

P value = 0.247 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 27 9 0.1 - 134.3 (46.6)
subtype1 9 4 10.6 - 130.8 (43.9)
subtype2 10 3 0.1 - 78.2 (36.5)
subtype3 8 2 14.4 - 134.3 (51.3)

Figure S1.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA CNMF subtypes' versus 'AGE'

P value = 0.326 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 27 39.3 (9.1)
subtype1 9 39.2 (6.2)
subtype2 10 42.3 (7.6)
subtype3 8 35.8 (12.6)

Figure S2.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'mRNA CNMF subtypes' versus 'GENDER'

P value = 0.101 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 9 18
subtype1 2 7
subtype2 6 4
subtype3 1 7

Figure S3.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.441 (ANOVA), Q value = 1

Table S5.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 17 88.8 (12.2)
subtype1 7 84.3 (16.2)
subtype2 7 92.9 (7.6)
subtype3 3 90.0 (10.0)

Figure S4.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'mRNA CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0226 (Chi-square test), Q value = 0.7

Table S6.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 10 9 8
subtype1 7 2 0
subtype2 2 3 5
subtype3 1 4 3

Figure S5.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'mRNA CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.384 (Fisher's exact test), Q value = 1

Table S7.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 19 8
subtype1 7 2
subtype2 8 2
subtype3 4 4

Figure S6.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #2: 'mRNA cHierClus subtypes'

Table S8.  Get Full Table Description of clustering approach #2: 'mRNA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 9 7 11
'mRNA cHierClus subtypes' versus 'Time to Death'

P value = 0.31 (logrank test), Q value = 1

Table S9.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 27 9 0.1 - 134.3 (46.6)
subtype1 9 4 10.6 - 130.8 (43.9)
subtype2 7 2 14.4 - 134.3 (52.4)
subtype3 11 3 0.1 - 78.2 (41.1)

Figure S7.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA cHierClus subtypes' versus 'AGE'

P value = 0.467 (ANOVA), Q value = 1

Table S10.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 27 39.3 (9.1)
subtype1 9 39.2 (6.2)
subtype2 7 36.0 (13.6)
subtype3 11 41.5 (7.6)

Figure S8.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'mRNA cHierClus subtypes' versus 'GENDER'

P value = 0.172 (Fisher's exact test), Q value = 1

Table S11.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 9 18
subtype1 2 7
subtype2 1 6
subtype3 6 5

Figure S9.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.441 (ANOVA), Q value = 1

Table S12.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 17 88.8 (12.2)
subtype1 7 84.3 (16.2)
subtype2 3 90.0 (10.0)
subtype3 7 92.9 (7.6)

Figure S10.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'mRNA cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0136 (Chi-square test), Q value = 0.46

Table S13.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 10 9 8
subtype1 7 2 0
subtype2 0 4 3
subtype3 3 3 5

Figure S11.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'mRNA cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.757 (Fisher's exact test), Q value = 1

Table S14.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 19 8
subtype1 7 2
subtype2 4 3
subtype3 8 3

Figure S12.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #3: 'CN CNMF'

Table S15.  Get Full Table Description of clustering approach #3: 'CN CNMF'

Cluster Labels 1 2 3
Number of samples 59 50 69
'CN CNMF' versus 'Time to Death'

P value = 0.0131 (logrank test), Q value = 0.46

Table S16.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 177 50 0.0 - 211.2 (14.7)
subtype1 59 22 0.1 - 211.2 (8.8)
subtype2 50 17 0.1 - 156.2 (18.2)
subtype3 68 11 0.0 - 182.3 (14.5)

Figure S13.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

'CN CNMF' versus 'AGE'

P value = 0.162 (ANOVA), Q value = 1

Table S17.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 178 43.1 (13.4)
subtype1 59 45.8 (13.4)
subtype2 50 42.3 (12.5)
subtype3 69 41.5 (13.8)

Figure S14.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #2: 'AGE'

'CN CNMF' versus 'GENDER'

P value = 0.0354 (Fisher's exact test), Q value = 1

Table S18.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 76 102
subtype1 33 26
subtype2 20 30
subtype3 23 46

Figure S15.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

'CN CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0523 (ANOVA), Q value = 1

Table S19.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 92 88.5 (10.5)
subtype1 34 91.2 (6.9)
subtype2 29 84.8 (13.3)
subtype3 29 89.0 (10.1)

Figure S16.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'CN CNMF' versus 'HISTOLOGICAL.TYPE'

P value = 0.000129 (Chi-square test), Q value = 0.0055

Table S20.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 55 47 75
subtype1 27 19 12
subtype2 17 12 21
subtype3 11 16 42

Figure S17.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'CN CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.0365 (Fisher's exact test), Q value = 1

Table S21.  Clustering Approach #3: 'CN CNMF' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 96 82
subtype1 35 24
subtype2 32 18
subtype3 29 40

Figure S18.  Get High-res Image Clustering Approach #3: 'CN CNMF' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #4: 'METHLYATION CNMF'

Table S22.  Get Full Table Description of clustering approach #4: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4
Number of samples 76 29 19 50
'METHLYATION CNMF' versus 'Time to Death'

P value = 1.19e-05 (logrank test), Q value = 0.00055

Table S23.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 173 46 0.0 - 211.2 (14.5)
subtype1 76 20 0.0 - 156.2 (17.5)
subtype2 29 16 0.1 - 211.2 (8.4)
subtype3 19 2 0.1 - 97.9 (10.6)
subtype4 49 8 0.1 - 182.3 (14.5)

Figure S19.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 2.76e-05 (ANOVA), Q value = 0.0012

Table S24.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 174 43.1 (13.4)
subtype1 76 39.8 (12.2)
subtype2 29 50.4 (14.1)
subtype3 19 35.6 (12.3)
subtype4 50 46.6 (12.3)

Figure S20.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.0183 (Fisher's exact test), Q value = 0.58

Table S25.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 76 98
subtype1 28 48
subtype2 20 9
subtype3 6 13
subtype4 22 28

Figure S21.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.872 (ANOVA), Q value = 1

Table S26.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 91 88.6 (10.5)
subtype1 45 89.3 (10.5)
subtype2 17 87.1 (5.9)
subtype3 7 87.1 (9.5)
subtype4 22 88.6 (13.6)

Figure S22.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'METHLYATION CNMF' versus 'HISTOLOGICAL.TYPE'

P value = 1.55e-11 (Chi-square test), Q value = 7.4e-10

Table S27.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 54 46 73
subtype1 30 27 18
subtype2 17 7 5
subtype3 6 6 7
subtype4 1 6 43

Figure S23.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.000172 (Fisher's exact test), Q value = 0.0072

Table S28.  Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 93 81
subtype1 53 23
subtype2 17 12
subtype3 6 13
subtype4 17 33

Figure S24.  Get High-res Image Clustering Approach #4: 'METHLYATION CNMF' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S29.  Get Full Table Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 23 29 24 34
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.000486 (logrank test), Q value = 0.019

Table S30.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 110 41 0.0 - 211.2 (19.0)
subtype1 23 16 4.1 - 211.2 (13.4)
subtype2 29 10 0.0 - 130.8 (25.9)
subtype3 24 7 1.2 - 182.3 (29.4)
subtype4 34 8 0.1 - 156.2 (18.2)

Figure S25.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.0677 (ANOVA), Q value = 1

Table S31.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 110 42.9 (12.9)
subtype1 23 46.8 (14.3)
subtype2 29 39.5 (10.3)
subtype3 24 46.6 (10.8)
subtype4 34 40.7 (14.3)

Figure S26.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.294 (Fisher's exact test), Q value = 1

Table S32.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 50 60
subtype1 14 9
subtype2 11 18
subtype3 12 12
subtype4 13 21

Figure S27.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.204 (ANOVA), Q value = 1

Table S33.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 58 88.6 (11.0)
subtype1 14 88.6 (5.3)
subtype2 17 92.9 (5.9)
subtype3 13 84.6 (18.1)
subtype4 14 87.1 (10.7)

Figure S28.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 4.12e-06 (Chi-square test), Q value = 0.00019

Table S34.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 36 27 46
subtype1 15 5 3
subtype2 13 9 7
subtype3 1 3 20
subtype4 7 10 16

Figure S29.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.00271 (Fisher's exact test), Q value = 0.1

Table S35.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 66 44
subtype1 17 6
subtype2 23 6
subtype3 8 16
subtype4 18 16

Figure S30.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S36.  Get Full Table Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 35 35 20 20
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.000316 (logrank test), Q value = 0.013

Table S37.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 110 41 0.0 - 211.2 (19.0)
subtype1 35 8 0.1 - 156.2 (17.4)
subtype2 35 12 0.0 - 130.8 (25.9)
subtype3 20 7 4.8 - 182.3 (31.2)
subtype4 20 14 4.1 - 211.2 (12.5)

Figure S31.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.0059 (ANOVA), Q value = 0.22

Table S38.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 110 42.9 (12.9)
subtype1 35 42.8 (14.3)
subtype2 35 37.7 (10.5)
subtype3 20 45.9 (10.6)
subtype4 20 49.5 (13.2)

Figure S32.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.127 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 50 60
subtype1 13 22
subtype2 13 22
subtype3 11 9
subtype4 13 7

Figure S33.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.361 (ANOVA), Q value = 1

Table S40.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 58 88.6 (11.0)
subtype1 14 84.3 (14.5)
subtype2 20 90.5 (11.0)
subtype3 12 90.8 (10.0)
subtype4 12 88.3 (5.8)

Figure S34.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 1.22e-05 (Chi-square test), Q value = 0.00055

Table S41.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 36 27 46
subtype1 7 10 18
subtype2 15 11 8
subtype3 1 2 17
subtype4 13 4 3

Figure S35.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.0151 (Fisher's exact test), Q value = 0.5

Table S42.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 66 44
subtype1 17 18
subtype2 25 10
subtype3 8 12
subtype4 16 4

Figure S36.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #7: 'MIRseq CNMF subtypes'

Table S43.  Get Full Table Description of clustering approach #7: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 23 29 19 20 47 31 9
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.324 (logrank test), Q value = 1

Table S44.  Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 177 49 0.0 - 211.2 (14.7)
subtype1 23 4 0.0 - 107.9 (6.0)
subtype2 29 12 0.1 - 134.3 (28.2)
subtype3 19 8 0.8 - 117.4 (16.5)
subtype4 19 4 0.1 - 94.3 (17.3)
subtype5 47 8 0.1 - 156.2 (8.8)
subtype6 31 12 1.2 - 211.2 (17.9)
subtype7 9 1 3.1 - 95.6 (15.3)

Figure S37.  Get High-res Image Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.00901 (ANOVA), Q value = 0.32

Table S45.  Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 178 43.3 (13.3)
subtype1 23 37.2 (10.9)
subtype2 29 42.0 (11.3)
subtype3 19 48.5 (12.9)
subtype4 20 49.4 (13.3)
subtype5 47 41.9 (14.0)
subtype6 31 46.1 (14.1)
subtype7 9 36.1 (11.2)

Figure S38.  Get High-res Image Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.0591 (Chi-square test), Q value = 1

Table S46.  Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 76 102
subtype1 5 18
subtype2 8 21
subtype3 11 8
subtype4 11 9
subtype5 21 26
subtype6 17 14
subtype7 3 6

Figure S39.  Get High-res Image Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.294 (ANOVA), Q value = 1

Table S47.  Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 91 88.6 (10.5)
subtype1 13 93.8 (5.1)
subtype2 16 86.9 (12.0)
subtype3 11 91.8 (6.0)
subtype4 9 90.0 (10.0)
subtype5 21 85.7 (10.3)
subtype6 18 87.8 (12.2)
subtype7 3 83.3 (20.8)

Figure S40.  Get High-res Image Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.000491 (Chi-square test), Q value = 0.019

Table S48.  Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 55 47 75
subtype1 10 8 5
subtype2 17 6 6
subtype3 9 6 4
subtype4 2 3 15
subtype5 9 15 22
subtype6 7 7 17
subtype7 1 2 6

Figure S41.  Get High-res Image Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'MIRseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.13 (Chi-square test), Q value = 1

Table S49.  Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 95 83
subtype1 9 14
subtype2 19 10
subtype3 11 8
subtype4 9 11
subtype5 21 26
subtype6 22 9
subtype7 4 5

Figure S42.  Get High-res Image Clustering Approach #7: 'MIRseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #8: 'MIRseq cHierClus subtypes'

Table S50.  Get Full Table Description of clustering approach #8: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 7 94 77
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0326 (logrank test), Q value = 0.98

Table S51.  Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 177 49 0.0 - 211.2 (14.7)
subtype1 7 1 7.1 - 21.0 (13.4)
subtype2 94 34 0.0 - 182.3 (17.0)
subtype3 76 14 0.1 - 211.2 (13.4)

Figure S43.  Get High-res Image Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.804 (ANOVA), Q value = 1

Table S52.  Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 178 43.3 (13.3)
subtype1 7 41.4 (13.1)
subtype2 94 42.9 (13.1)
subtype3 77 44.0 (13.8)

Figure S44.  Get High-res Image Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.693 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 76 102
subtype1 2 5
subtype2 39 55
subtype3 35 42

Figure S45.  Get High-res Image Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.852 (ANOVA), Q value = 1

Table S54.  Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 91 88.6 (10.5)
subtype1 5 88.0 (4.5)
subtype2 48 89.2 (9.9)
subtype3 38 87.9 (11.9)

Figure S46.  Get High-res Image Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0496 (Chi-square test), Q value = 1

Table S55.  Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 55 47 75
subtype1 3 1 3
subtype2 37 24 32
subtype3 15 22 40

Figure S47.  Get High-res Image Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'MIRseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.0781 (Fisher's exact test), Q value = 1

Table S56.  Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 95 83
subtype1 5 2
subtype2 56 38
subtype3 34 43

Figure S48.  Get High-res Image Clustering Approach #8: 'MIRseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Methods & Data
Input
  • Cluster data file = LGG-TP.mergedcluster.txt

  • Clinical data file = LGG-TP.clin.merged.picked.txt

  • Number of patients = 179

  • Number of clustering approaches = 8

  • Number of selected clinical features = 6

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)