Liver Hepatocellular Carcinoma: Correlation between molecular cancer subtypes and selected clinical features
(primary solid tumor cohort)
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 4 different clustering approaches and 3 clinical features across 62 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 4 subtypes that correlate to 'AGE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 4 different clustering approaches and 3 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Time
to
Death
AGE GENDER
Statistical Tests logrank test ANOVA Fisher's exact test
CN CNMF 0.751
(1.00)
0.871
(1.00)
0.495
(1.00)
METHLYATION CNMF 0.199
(1.00)
0.154
(1.00)
0.469
(1.00)
MIRseq CNMF subtypes 0.943
(1.00)
0.242
(1.00)
0.158
(1.00)
MIRseq cHierClus subtypes 0.706
(1.00)
0.0122
(0.146)
0.262
(1.00)
Clustering Approach #1: 'CN CNMF'

Table S1.  Get Full Table Description of clustering approach #1: 'CN CNMF'

Cluster Labels 1 2 3
Number of samples 15 22 24
'CN CNMF' versus 'Time to Death'

P value = 0.751 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 55 26 0.1 - 90.7 (12.8)
subtype1 14 7 0.1 - 90.7 (7.8)
subtype2 19 8 0.4 - 69.6 (14.3)
subtype3 22 11 0.3 - 83.6 (11.3)

Figure S1.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

'CN CNMF' versus 'AGE'

P value = 0.871 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 56 61.8 (14.0)
subtype1 14 60.4 (16.0)
subtype2 19 61.5 (15.0)
subtype3 23 62.9 (12.3)

Figure S2.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'

'CN CNMF' versus 'GENDER'

P value = 0.495 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 22 39
subtype1 4 11
subtype2 10 12
subtype3 8 16

Figure S3.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #2: 'METHLYATION CNMF'

Table S5.  Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 19 15 27
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.199 (logrank test), Q value = 1

Table S6.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 54 25 0.1 - 90.7 (12.2)
subtype1 15 8 0.4 - 90.7 (19.8)
subtype2 13 7 0.1 - 53.3 (7.1)
subtype3 26 10 0.3 - 83.6 (8.3)

Figure S4.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.154 (ANOVA), Q value = 1

Table S7.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 56 60.8 (14.7)
subtype1 15 57.7 (18.8)
subtype2 15 56.9 (15.8)
subtype3 26 64.9 (10.2)

Figure S5.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.469 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 23 38
subtype1 9 10
subtype2 6 9
subtype3 8 19

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #3: 'MIRseq CNMF subtypes'

Table S9.  Get Full Table Description of clustering approach #3: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 22 12 27
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 0.943 (logrank test), Q value = 1

Table S10.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 54 25 0.1 - 83.6 (12.2)
subtype1 19 11 0.1 - 69.6 (14.4)
subtype2 9 4 1.1 - 83.6 (5.9)
subtype3 26 10 0.3 - 53.3 (11.0)

Figure S7.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.242 (ANOVA), Q value = 1

Table S11.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 56 61.0 (14.8)
subtype1 21 57.2 (14.9)
subtype2 9 59.7 (19.4)
subtype3 26 64.5 (12.7)

Figure S8.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'GENDER'

P value = 0.158 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 23 38
subtype1 11 11
subtype2 2 10
subtype3 10 17

Figure S9.  Get High-res Image Clustering Approach #3: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #4: 'MIRseq cHierClus subtypes'

Table S13.  Get Full Table Description of clustering approach #4: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 8 9 20 24
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 0.706 (logrank test), Q value = 1

Table S14.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 54 25 0.1 - 83.6 (12.2)
subtype1 8 2 0.3 - 53.3 (2.3)
subtype2 7 4 1.1 - 83.6 (11.6)
subtype3 17 11 0.1 - 69.6 (14.9)
subtype4 22 8 2.6 - 51.2 (14.0)

Figure S10.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.0122 (ANOVA), Q value = 0.15

Table S15.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 56 61.0 (14.8)
subtype1 8 64.2 (6.5)
subtype2 7 60.7 (18.5)
subtype3 19 52.6 (16.8)
subtype4 22 67.2 (10.7)

Figure S11.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'GENDER'

P value = 0.262 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 23 38
subtype1 1 7
subtype2 2 7
subtype3 9 11
subtype4 11 13

Figure S12.  Get High-res Image Clustering Approach #4: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Methods & Data
Input
  • Cluster data file = LIHC-TP.mergedcluster.txt

  • Clinical data file = LIHC-TP.clin.merged.picked.txt

  • Number of patients = 62

  • Number of clustering approaches = 4

  • Number of selected clinical features = 3

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)