Prostate Adenocarcinoma: Correlation between molecular cancer subtypes and selected clinical features
(primary solid tumor cohort)
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 6 different clustering approaches and 3 clinical features across 147 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'CN CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based miR expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 6 different clustering approaches and 3 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Time
to
Death
AGE RADIATIONS
RADIATION
REGIMENINDICATION
Statistical Tests logrank test ANOVA Fisher's exact test
CN CNMF 100
(1.00)
0.0257
(0.436)
0.853
(1.00)
METHLYATION CNMF 100
(1.00)
0.00439
(0.0789)
0.861
(1.00)
RNAseq CNMF subtypes 100
(1.00)
0.207
(1.00)
0.86
(1.00)
RNAseq cHierClus subtypes 100
(1.00)
0.302
(1.00)
1
(1.00)
MIRseq CNMF subtypes 100
(1.00)
0.0775
(1.00)
0.631
(1.00)
MIRseq cHierClus subtypes 100
(1.00)
0.46
(1.00)
0.197
(1.00)
Clustering Approach #1: 'CN CNMF'

Table S1.  Get Full Table Description of clustering approach #1: 'CN CNMF'

Cluster Labels 1 2 3 4
Number of samples 33 66 46 1
'CN CNMF' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 145 1 0.3 - 66.0 (16.8)
subtype1 33 0 0.3 - 63.3 (9.4)
subtype2 66 0 1.0 - 65.9 (17.6)
subtype3 46 1 0.9 - 66.0 (18.5)

Figure S1.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #1: 'Time to Death'

'CN CNMF' versus 'AGE'

P value = 0.0257 (ANOVA), Q value = 0.44

Table S3.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 145 60.5 (6.9)
subtype1 33 61.9 (6.1)
subtype2 66 58.8 (7.5)
subtype3 46 61.9 (6.1)

Figure S2.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #2: 'AGE'

'CN CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.853 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 140
subtype1 1 32
subtype2 3 63
subtype3 1 45

Figure S3.  Get High-res Image Clustering Approach #1: 'CN CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #2: 'METHLYATION CNMF'

Table S5.  Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 47 43 57
'METHLYATION CNMF' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S6.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 147 1 0.3 - 66.0 (16.6)
subtype1 47 0 0.3 - 65.9 (15.9)
subtype2 43 0 1.1 - 54.9 (13.1)
subtype3 57 1 1.0 - 66.0 (17.5)

Figure S4.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.00439 (ANOVA), Q value = 0.079

Table S7.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 147 60.4 (7.0)
subtype1 47 61.9 (6.3)
subtype2 43 57.5 (7.2)
subtype3 57 61.4 (6.8)

Figure S5.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.861 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 142
subtype1 1 46
subtype2 2 41
subtype3 2 55

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S9.  Get Full Table Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 40 35 42
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S10.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 117 1 0.3 - 66.0 (14.8)
subtype1 40 0 0.3 - 65.9 (16.0)
subtype2 35 0 1.0 - 54.9 (13.0)
subtype3 42 1 1.0 - 66.0 (14.8)

Figure S7.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.207 (ANOVA), Q value = 1

Table S11.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 117 60.7 (7.2)
subtype1 40 61.5 (6.9)
subtype2 35 58.9 (7.3)
subtype3 42 61.4 (7.2)

Figure S8.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.86 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 112
subtype1 1 39
subtype2 2 33
subtype3 2 40

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S13.  Get Full Table Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 34 36 47
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S14.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 117 1 0.3 - 66.0 (14.8)
subtype1 34 0 1.0 - 65.9 (15.5)
subtype2 36 1 1.0 - 66.0 (13.0)
subtype3 47 0 0.3 - 54.9 (13.1)

Figure S10.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.302 (ANOVA), Q value = 1

Table S15.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 117 60.7 (7.2)
subtype1 34 60.9 (7.1)
subtype2 36 62.0 (7.5)
subtype3 47 59.5 (6.9)

Figure S11.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 1 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 112
subtype1 1 33
subtype2 2 34
subtype3 2 45

Figure S12.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #5: 'MIRseq CNMF subtypes'

Table S17.  Get Full Table Description of clustering approach #5: 'MIRseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 41 40 26 38
'MIRseq CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S18.  Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 145 1 0.3 - 66.0 (16.6)
subtype1 41 0 0.9 - 66.0 (22.1)
subtype2 40 0 3.0 - 54.9 (19.7)
subtype3 26 0 0.3 - 64.1 (16.0)
subtype4 38 1 1.0 - 66.0 (5.7)

Figure S13.  Get High-res Image Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq CNMF subtypes' versus 'AGE'

P value = 0.0775 (ANOVA), Q value = 1

Table S19.  Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 145 60.5 (6.9)
subtype1 41 62.7 (6.1)
subtype2 40 58.9 (7.0)
subtype3 26 59.4 (6.8)
subtype4 38 60.4 (7.4)

Figure S14.  Get High-res Image Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.631 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 140
subtype1 2 39
subtype2 2 38
subtype3 1 25
subtype4 0 38

Figure S15.  Get High-res Image Clustering Approach #5: 'MIRseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #6: 'MIRseq cHierClus subtypes'

Table S21.  Get Full Table Description of clustering approach #6: 'MIRseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 25 68 52
'MIRseq cHierClus subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S22.  Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 145 1 0.3 - 66.0 (16.6)
subtype1 25 0 0.3 - 64.1 (18.2)
subtype2 68 0 0.9 - 65.9 (22.6)
subtype3 52 1 1.0 - 66.0 (6.0)

Figure S16.  Get High-res Image Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq cHierClus subtypes' versus 'AGE'

P value = 0.46 (ANOVA), Q value = 1

Table S23.  Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 145 60.5 (6.9)
subtype1 25 59.0 (6.7)
subtype2 68 61.0 (6.9)
subtype3 52 60.4 (7.2)

Figure S17.  Get High-res Image Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.197 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 140
subtype1 1 24
subtype2 4 64
subtype3 0 52

Figure S18.  Get High-res Image Clustering Approach #6: 'MIRseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Methods & Data
Input
  • Cluster data file = PRAD-TP.mergedcluster.txt

  • Clinical data file = PRAD-TP.clin.merged.picked.txt

  • Number of patients = 147

  • Number of clustering approaches = 6

  • Number of selected clinical features = 3

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)