Correlation between gene mutation status and molecular subtypes
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and molecular subtypes.

Summary

Testing the association between mutation status of 47 genes and 6 molecular subtypes across 116 patients, 14 significant findings detected with P value < 0.05 and Q value < 0.25.

  • CBWD1 mutation correlated to 'CN_CNMF'.

  • PGM5 mutation correlated to 'CN_CNMF'.

  • TP53 mutation correlated to 'CN_CNMF' and 'MIRSEQ_CHIERARCHICAL'.

  • PIK3CA mutation correlated to 'CN_CNMF',  'METHLYATION_CNMF', and 'MIRSEQ_CHIERARCHICAL'.

  • ACVR2A mutation correlated to 'CN_CNMF'.

  • ARID1A mutation correlated to 'CN_CNMF' and 'MIRSEQ_CHIERARCHICAL'.

  • IRF2 mutation correlated to 'CN_CNMF'.

  • RNF43 mutation correlated to 'CN_CNMF'.

  • PHF2 mutation correlated to 'CN_CNMF'.

  • POM121L12 mutation correlated to 'CN_CNMF'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 47 genes and 6 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 14 significant findings detected.

Clinical
Features
CN
CNMF
METHLYATION
CNMF
MRNASEQ
CNMF
MRNASEQ
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
nMutated (%) nWild-Type Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
PIK3CA 24 (21%) 92 0.000604
(0.15)
1.59e-06
(0.000411)
0.412
(1.00)
0.84
(1.00)
0.0857
(1.00)
0.000704
(0.174)
TP53 52 (45%) 64 5.72e-05
(0.0146)
0.0203
(1.00)
1
(1.00)
0.236
(1.00)
0.00526
(1.00)
3.69e-05
(0.00947)
ARID1A 22 (19%) 94 7.73e-05
(0.0196)
0.0145
(1.00)
0.488
(1.00)
0.274
(1.00)
0.00562
(1.00)
0.000467
(0.116)
CBWD1 14 (12%) 102 0.000115
(0.0289)
0.0773
(1.00)
0.457
(1.00)
0.213
(1.00)
0.0561
(1.00)
0.193
(1.00)
PGM5 16 (14%) 100 6.89e-06
(0.00178)
0.00344
(0.843)
0.281
(1.00)
0.157
(1.00)
0.262
(1.00)
0.162
(1.00)
ACVR2A 13 (11%) 103 0.000145
(0.0363)
0.0238
(1.00)
0.698
(1.00)
0.424
(1.00)
0.0246
(1.00)
0.0563
(1.00)
IRF2 8 (7%) 108 6.38e-05
(0.0162)
0.0497
(1.00)
1
(1.00)
0.279
(1.00)
0.197
(1.00)
0.278
(1.00)
RNF43 13 (11%) 103 5.9e-05
(0.015)
0.0289
(1.00)
0.698
(1.00)
0.732
(1.00)
0.184
(1.00)
0.0507
(1.00)
PHF2 12 (10%) 104 0.00013
(0.0327)
0.0238
(1.00)
0.664
(1.00)
0.0472
(1.00)
0.0414
(1.00)
0.0272
(1.00)
POM121L12 7 (6%) 109 0.000787
(0.194)
0.253
(1.00)
1
(1.00)
0.745
(1.00)
0.85
(1.00)
0.309
(1.00)
KRAS 14 (12%) 102 0.107
(1.00)
0.411
(1.00)
1
(1.00)
0.299
(1.00)
0.271
(1.00)
0.706
(1.00)
RPL22 9 (8%) 107 0.0234
(1.00)
0.412
(1.00)
0.0729
(1.00)
0.282
(1.00)
0.28
(1.00)
TRIM48 10 (9%) 106 0.0137
(1.00)
0.206
(1.00)
1
(1.00)
1
(1.00)
0.103
(1.00)
0.173
(1.00)
XPOT 6 (5%) 110 0.0136
(1.00)
0.345
(1.00)
1
(1.00)
0.327
(1.00)
0.0539
(1.00)
RHOA 7 (6%) 109 0.146
(1.00)
0.851
(1.00)
0.488
(1.00)
0.383
(1.00)
0.683
(1.00)
OR8H3 10 (9%) 106 0.611
(1.00)
0.0907
(1.00)
0.108
(1.00)
0.101
(1.00)
0.873
(1.00)
0.205
(1.00)
EDNRB 12 (10%) 104 0.33
(1.00)
0.545
(1.00)
0.412
(1.00)
0.84
(1.00)
0.405
(1.00)
0.162
(1.00)
ZNF804B 18 (16%) 98 0.202
(1.00)
0.0568
(1.00)
0.281
(1.00)
0.885
(1.00)
0.177
(1.00)
0.209
(1.00)
IAPP 4 (3%) 112 0.385
(1.00)
1
(1.00)
0.131
(1.00)
0.569
(1.00)
PCDH15 22 (19%) 94 0.766
(1.00)
0.916
(1.00)
0.721
(1.00)
0.885
(1.00)
0.71
(1.00)
0.952
(1.00)
SPRYD5 8 (7%) 108 0.166
(1.00)
0.05
(1.00)
1
(1.00)
0.643
(1.00)
0.307
(1.00)
0.805
(1.00)
TUSC3 9 (8%) 107 0.237
(1.00)
0.547
(1.00)
0.488
(1.00)
1
(1.00)
0.815
(1.00)
FGF22 3 (3%) 113 0.0354
(1.00)
1
(1.00)
1
(1.00)
0.324
(1.00)
HLA-B 9 (8%) 107 0.0491
(1.00)
0.00377
(0.92)
0.607
(1.00)
1
(1.00)
0.869
(1.00)
0.666
(1.00)
PTH2 3 (3%) 113 1
(1.00)
0.125
(1.00)
0.143
(1.00)
0.8
(1.00)
C17ORF63 3 (3%) 113 0.759
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
SMAD4 7 (6%) 109 0.406
(1.00)
0.741
(1.00)
1
(1.00)
0.745
(1.00)
0.85
(1.00)
1
(1.00)
POTEG 6 (5%) 110 0.183
(1.00)
0.556
(1.00)
1
(1.00)
1
(1.00)
0.662
(1.00)
0.36
(1.00)
WBSCR17 12 (10%) 104 0.0529
(1.00)
0.00743
(1.00)
0.607
(1.00)
0.643
(1.00)
0.241
(1.00)
0.451
(1.00)
TPTE 14 (12%) 102 0.868
(1.00)
0.895
(1.00)
0.412
(1.00)
0.84
(1.00)
0.212
(1.00)
0.498
(1.00)
CDH1 11 (9%) 105 0.112
(1.00)
0.531
(1.00)
0.607
(1.00)
0.745
(1.00)
0.0812
(1.00)
0.0936
(1.00)
CPS1 13 (11%) 103 0.447
(1.00)
0.296
(1.00)
1
(1.00)
0.863
(1.00)
0.902
(1.00)
0.132
(1.00)
INO80E 5 (4%) 111 0.25
(1.00)
0.607
(1.00)
0.279
(1.00)
0.348
(1.00)
1
(1.00)
ELF3 5 (4%) 111 0.0484
(1.00)
0.227
(1.00)
1
(1.00)
0.622
(1.00)
0.077
(1.00)
PARK2 9 (8%) 107 0.0755
(1.00)
0.0388
(1.00)
1
(1.00)
0.45
(1.00)
0.869
(1.00)
0.28
(1.00)
LARP4B 5 (4%) 111 0.0132
(1.00)
0.206
(1.00)
1
(1.00)
0.622
(1.00)
0.077
(1.00)
OR6K3 6 (5%) 110 0.0756
(1.00)
0.472
(1.00)
1
(1.00)
0.387
(1.00)
0.522
(1.00)
0.868
(1.00)
TM7SF4 7 (6%) 109 0.146
(1.00)
0.296
(1.00)
0.488
(1.00)
0.85
(1.00)
0.267
(1.00)
UPF3A 6 (5%) 110 0.22
(1.00)
0.206
(1.00)
0.607
(1.00)
0.745
(1.00)
0.522
(1.00)
0.222
(1.00)
C7ORF63 5 (4%) 111 0.0132
(1.00)
1
(1.00)
1
(1.00)
0.622
(1.00)
0.507
(1.00)
KDM4B 10 (9%) 106 0.00512
(1.00)
0.05
(1.00)
0.345
(1.00)
0.45
(1.00)
0.873
(1.00)
0.627
(1.00)
KIAA0748 7 (6%) 109 0.344
(1.00)
0.507
(1.00)
1
(1.00)
0.256
(1.00)
0.599
(1.00)
OR8B4 3 (3%) 113 0.407
(1.00)
0.00894
(1.00)
1
(1.00)
0.604
(1.00)
RASA1 9 (8%) 107 0.0654
(1.00)
0.355
(1.00)
0.664
(1.00)
0.73
(1.00)
0.175
(1.00)
0.495
(1.00)
SLITRK6 10 (9%) 106 0.553
(1.00)
0.934
(1.00)
0.108
(1.00)
0.745
(1.00)
0.174
(1.00)
0.835
(1.00)
TP53TG5 4 (3%) 112 0.12
(1.00)
1
(1.00)
1
(1.00)
0.808
(1.00)
LHCGR 7 (6%) 109 0.76
(1.00)
0.815
(1.00)
0.488
(1.00)
0.709
(1.00)
0.267
(1.00)
'CBWD1 MUTATION STATUS' versus 'CN_CNMF'

P value = 0.000115 (Fisher's exact test), Q value = 0.029

Table S1.  Gene #1: 'CBWD1 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
CBWD1 MUTATED 8 1 5
CBWD1 WILD-TYPE 12 54 35

Figure S1.  Get High-res Image Gene #1: 'CBWD1 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'PGM5 MUTATION STATUS' versus 'CN_CNMF'

P value = 6.89e-06 (Fisher's exact test), Q value = 0.0018

Table S2.  Gene #3: 'PGM5 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
PGM5 MUTATED 10 2 4
PGM5 WILD-TYPE 10 53 36

Figure S2.  Get High-res Image Gene #3: 'PGM5 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'TP53 MUTATION STATUS' versus 'CN_CNMF'

P value = 5.72e-05 (Fisher's exact test), Q value = 0.015

Table S3.  Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
TP53 MUTATED 4 36 11
TP53 WILD-TYPE 16 19 29

Figure S3.  Get High-res Image Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'TP53 MUTATION STATUS' versus 'MIRSEQ_CHIERARCHICAL'

P value = 3.69e-05 (Fisher's exact test), Q value = 0.0095

Table S4.  Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #6: 'MIRSEQ_CHIERARCHICAL'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 27 56 32
TP53 MUTATED 22 20 9
TP53 WILD-TYPE 5 36 23

Figure S4.  Get High-res Image Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #6: 'MIRSEQ_CHIERARCHICAL'

'PIK3CA MUTATION STATUS' versus 'CN_CNMF'

P value = 0.000604 (Fisher's exact test), Q value = 0.15

Table S5.  Gene #8: 'PIK3CA MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
PIK3CA MUTATED 9 4 11
PIK3CA WILD-TYPE 11 51 29

Figure S5.  Get High-res Image Gene #8: 'PIK3CA MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'PIK3CA MUTATION STATUS' versus 'METHLYATION_CNMF'

P value = 1.59e-06 (Fisher's exact test), Q value = 0.00041

Table S6.  Gene #8: 'PIK3CA MUTATION STATUS' versus Clinical Feature #2: 'METHLYATION_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3 CLUS_4
ALL 9 14 25 20
PIK3CA MUTATED 9 4 3 2
PIK3CA WILD-TYPE 0 10 22 18

Figure S6.  Get High-res Image Gene #8: 'PIK3CA MUTATION STATUS' versus Clinical Feature #2: 'METHLYATION_CNMF'

'PIK3CA MUTATION STATUS' versus 'MIRSEQ_CHIERARCHICAL'

P value = 0.000704 (Fisher's exact test), Q value = 0.17

Table S7.  Gene #8: 'PIK3CA MUTATION STATUS' versus Clinical Feature #6: 'MIRSEQ_CHIERARCHICAL'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 27 56 32
PIK3CA MUTATED 2 20 2
PIK3CA WILD-TYPE 25 36 30

Figure S7.  Get High-res Image Gene #8: 'PIK3CA MUTATION STATUS' versus Clinical Feature #6: 'MIRSEQ_CHIERARCHICAL'

'ACVR2A MUTATION STATUS' versus 'CN_CNMF'

P value = 0.000145 (Fisher's exact test), Q value = 0.036

Table S8.  Gene #9: 'ACVR2A MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
ACVR2A MUTATED 4 0 9
ACVR2A WILD-TYPE 16 55 31

Figure S8.  Get High-res Image Gene #9: 'ACVR2A MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'ARID1A MUTATION STATUS' versus 'CN_CNMF'

P value = 7.73e-05 (Fisher's exact test), Q value = 0.02

Table S9.  Gene #11: 'ARID1A MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
ARID1A MUTATED 10 3 9
ARID1A WILD-TYPE 10 52 31

Figure S9.  Get High-res Image Gene #11: 'ARID1A MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'ARID1A MUTATION STATUS' versus 'MIRSEQ_CHIERARCHICAL'

P value = 0.000467 (Fisher's exact test), Q value = 0.12

Table S10.  Gene #11: 'ARID1A MUTATION STATUS' versus Clinical Feature #6: 'MIRSEQ_CHIERARCHICAL'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 27 56 32
ARID1A MUTATED 0 18 4
ARID1A WILD-TYPE 27 38 28

Figure S10.  Get High-res Image Gene #11: 'ARID1A MUTATION STATUS' versus Clinical Feature #6: 'MIRSEQ_CHIERARCHICAL'

'IRF2 MUTATION STATUS' versus 'CN_CNMF'

P value = 6.38e-05 (Fisher's exact test), Q value = 0.016

Table S11.  Gene #15: 'IRF2 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
IRF2 MUTATED 6 0 2
IRF2 WILD-TYPE 14 55 38

Figure S11.  Get High-res Image Gene #15: 'IRF2 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'RNF43 MUTATION STATUS' versus 'CN_CNMF'

P value = 5.9e-05 (Fisher's exact test), Q value = 0.015

Table S12.  Gene #26: 'RNF43 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
RNF43 MUTATED 8 1 4
RNF43 WILD-TYPE 12 54 36

Figure S12.  Get High-res Image Gene #26: 'RNF43 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'PHF2 MUTATION STATUS' versus 'CN_CNMF'

P value = 0.00013 (Fisher's exact test), Q value = 0.033

Table S13.  Gene #28: 'PHF2 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
PHF2 MUTATED 6 0 6
PHF2 WILD-TYPE 14 55 34

Figure S13.  Get High-res Image Gene #28: 'PHF2 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

'POM121L12 MUTATION STATUS' versus 'CN_CNMF'

P value = 0.000787 (Fisher's exact test), Q value = 0.19

Table S14.  Gene #43: 'POM121L12 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 20 55 40
POM121L12 MUTATED 0 0 7
POM121L12 WILD-TYPE 20 55 33

Figure S14.  Get High-res Image Gene #43: 'POM121L12 MUTATION STATUS' versus Clinical Feature #1: 'CN_CNMF'

Methods & Data
Input
  • Mutation data file = STAD-TP.mutsig.cluster.txt

  • Molecular subtypes file = STAD-TP.transferedmergedcluster.txt

  • Number of patients = 116

  • Number of significantly mutated genes = 47

  • Number of Molecular subtypes = 6

  • Exclude genes that fewer than K tumors have mutations, K = 3

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[2] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)