This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between subtypes identified by 36 different clustering approaches and 15 clinical features across 284 patients, 29 significant findings detected with Q value < 0.25.
-
2 subtypes identified in current cancer cohort by '1q gain mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '4p gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '4q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '5p gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '5q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '7p gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '7q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '11p gain mutation analysis'. These subtypes correlate to 'HISTOLOGICAL.TYPE'.
-
2 subtypes identified in current cancer cohort by '12p gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '12q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '14q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '16p gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '16q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '17p gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '17q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '19p gain mutation analysis'. These subtypes correlate to 'HISTOLOGICAL.TYPE' and 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '19q gain mutation analysis'. These subtypes correlate to 'HISTOLOGICAL.TYPE' and 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '20p gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '20q gain mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '1p loss mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '2p loss mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '2q loss mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '3q loss mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '9p loss mutation analysis'. These subtypes correlate to 'NEOPLASM.DISEASESTAGE'.
-
2 subtypes identified in current cancer cohort by '9q loss mutation analysis'. These subtypes correlate to 'NEOPLASM.DISEASESTAGE'.
-
2 subtypes identified in current cancer cohort by '10p loss mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '10q loss mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '11p loss mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '11q loss mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '13q loss mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '15q loss mutation analysis'. These subtypes correlate to 'NUMBER.OF.LYMPH.NODES'.
-
2 subtypes identified in current cancer cohort by '17p loss mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '18p loss mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '18q loss mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '21q loss mutation analysis'. These subtypes do not correlate to any clinical features.
-
2 subtypes identified in current cancer cohort by '22q loss mutation analysis'. These subtypes do not correlate to any clinical features.
Table 1. Get Full Table Overview of the association between subtypes identified by 36 different clustering approaches and 15 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 29 significant findings detected.
Clinical Features |
Time to Death |
AGE | GENDER |
HISTOLOGICAL TYPE |
RADIATIONS RADIATION REGIMENINDICATION |
RADIATIONEXPOSURE |
DISTANT METASTASIS |
EXTRATHYROIDAL EXTENSION |
LYMPH NODE METASTASIS |
COMPLETENESS OF RESECTION |
NUMBER OF LYMPH NODES |
TUMOR STAGECODE |
NEOPLASM DISEASESTAGE |
MULTIFOCALITY |
TUMOR SIZE |
Statistical Tests | logrank test | t-test | Fisher's exact test | Chi-square test | Fisher's exact test | Fisher's exact test | Chi-square test | Chi-square test | Chi-square test | Chi-square test | t-test | t-test | Chi-square test | Fisher's exact test | t-test |
1q gain |
1 (1.00) |
0.166 (1.00) |
0.428 (1.00) |
0.295 (1.00) |
0.336 (1.00) |
1 (1.00) |
0.869 (1.00) |
0.00151 (0.701) |
0.319 (1.00) |
0.798 (1.00) |
0.452 (1.00) |
0.0796 (1.00) |
0.172 (1.00) |
0.681 (1.00) |
|
4p gain |
0.00468 (1.00) |
0.119 (1.00) |
1 (1.00) |
0.438 (1.00) |
0.184 (1.00) |
1 (1.00) |
0.187 (1.00) |
0.962 (1.00) |
0.36 (1.00) |
0.576 (1.00) |
3.02e-14 (1.46e-11) |
0.515 (1.00) |
0.622 (1.00) |
0.479 (1.00) |
|
4q gain |
0.00468 (1.00) |
0.119 (1.00) |
1 (1.00) |
0.438 (1.00) |
0.184 (1.00) |
1 (1.00) |
0.187 (1.00) |
0.962 (1.00) |
0.36 (1.00) |
0.576 (1.00) |
3.02e-14 (1.46e-11) |
0.515 (1.00) |
0.622 (1.00) |
0.479 (1.00) |
|
5p gain |
0.00468 (1.00) |
0.0796 (1.00) |
1 (1.00) |
0.00275 (1.00) |
0.336 (1.00) |
1 (1.00) |
0.0334 (1.00) |
0.678 (1.00) |
0.195 (1.00) |
0.819 (1.00) |
2.86e-14 (1.41e-11) |
0.0847 (1.00) |
0.723 (1.00) |
0.0691 (1.00) |
|
5q gain |
0.00468 (1.00) |
0.0796 (1.00) |
1 (1.00) |
0.00275 (1.00) |
0.336 (1.00) |
1 (1.00) |
0.0334 (1.00) |
0.678 (1.00) |
0.195 (1.00) |
0.819 (1.00) |
2.86e-14 (1.41e-11) |
0.0847 (1.00) |
0.723 (1.00) |
0.0691 (1.00) |
|
7p gain |
1 (1.00) |
0.0831 (1.00) |
1 (1.00) |
0.0117 (1.00) |
1 (1.00) |
1 (1.00) |
0.0742 (1.00) |
0.509 (1.00) |
0.0908 (1.00) |
0.399 (1.00) |
2.75e-14 (1.37e-11) |
0.0372 (1.00) |
0.749 (1.00) |
0.187 (1.00) |
|
7q gain |
1 (1.00) |
0.0477 (1.00) |
0.737 (1.00) |
0.000549 (0.257) |
1 (1.00) |
1 (1.00) |
0.125 (1.00) |
0.73 (1.00) |
0.0499 (1.00) |
0.105 (1.00) |
2.75e-14 (1.37e-11) |
0.0723 (1.00) |
0.769 (1.00) |
0.186 (1.00) |
|
11p gain |
1 (1.00) |
0.725 (1.00) |
1 (1.00) |
0.0003 (0.141) |
1 (1.00) |
1 (1.00) |
0.286 (1.00) |
0.594 (1.00) |
0.566 (1.00) |
0.905 (1.00) |
0.446 (1.00) |
0.622 (1.00) |
0.0135 (1.00) |
||
12p gain |
1 (1.00) |
0.286 (1.00) |
0.455 (1.00) |
0.00462 (1.00) |
1 (1.00) |
1 (1.00) |
0.0215 (1.00) |
0.59 (1.00) |
0.152 (1.00) |
0.821 (1.00) |
2.86e-14 (1.41e-11) |
0.271 (1.00) |
1 (1.00) |
0.389 (1.00) |
|
12q gain |
1 (1.00) |
0.286 (1.00) |
0.455 (1.00) |
0.00462 (1.00) |
1 (1.00) |
1 (1.00) |
0.0215 (1.00) |
0.59 (1.00) |
0.152 (1.00) |
0.821 (1.00) |
2.86e-14 (1.41e-11) |
0.271 (1.00) |
1 (1.00) |
0.389 (1.00) |
|
14q gain |
1 (1.00) |
0.536 (1.00) |
0.333 (1.00) |
0.0187 (1.00) |
1 (1.00) |
1 (1.00) |
0.122 (1.00) |
0.93 (1.00) |
0.464 (1.00) |
0.694 (1.00) |
3.02e-14 (1.46e-11) |
0.346 (1.00) |
0.37 (1.00) |
0.458 (1.00) |
|
16p gain |
1 (1.00) |
0.499 (1.00) |
0.196 (1.00) |
0.0837 (1.00) |
1 (1.00) |
1 (1.00) |
0.655 (1.00) |
0.899 (1.00) |
0.202 (1.00) |
0.181 (1.00) |
2.97e-14 (1.44e-11) |
0.559 (1.00) |
0.723 (1.00) |
0.494 (1.00) |
|
16q gain |
1 (1.00) |
0.339 (1.00) |
0.333 (1.00) |
0.557 (1.00) |
1 (1.00) |
1 (1.00) |
0.516 (1.00) |
0.93 (1.00) |
0.464 (1.00) |
0.694 (1.00) |
3.02e-14 (1.46e-11) |
0.346 (1.00) |
1 (1.00) |
0.412 (1.00) |
|
17p gain |
1 (1.00) |
0.533 (1.00) |
0.196 (1.00) |
0.00091 (0.423) |
1 (1.00) |
1 (1.00) |
0.248 (1.00) |
0.291 (1.00) |
0.273 (1.00) |
0.802 (1.00) |
2.91e-14 (1.42e-11) |
0.113 (1.00) |
1 (1.00) |
0.504 (1.00) |
|
17q gain |
1 (1.00) |
0.746 (1.00) |
0.118 (1.00) |
0.00282 (1.00) |
1 (1.00) |
1 (1.00) |
0.168 (1.00) |
0.243 (1.00) |
0.195 (1.00) |
0.819 (1.00) |
2.86e-14 (1.41e-11) |
0.184 (1.00) |
1 (1.00) |
0.796 (1.00) |
|
19p gain |
1 (1.00) |
0.188 (1.00) |
0.572 (1.00) |
1.02e-09 (4.81e-07) |
1 (1.00) |
1 (1.00) |
0.286 (1.00) |
0.594 (1.00) |
0.516 (1.00) |
0.392 (1.00) |
3.08e-14 (1.47e-11) |
0.722 (1.00) |
1 (1.00) |
0.593 (1.00) |
|
19q gain |
0.00468 (1.00) |
0.0704 (1.00) |
1 (1.00) |
4.35e-07 (0.000205) |
0.184 (1.00) |
1 (1.00) |
0.187 (1.00) |
0.498 (1.00) |
0.36 (1.00) |
0.576 (1.00) |
3.02e-14 (1.46e-11) |
0.515 (1.00) |
1 (1.00) |
0.344 (1.00) |
|
20p gain |
1 (1.00) |
0.562 (1.00) |
0.575 (1.00) |
0.00381 (1.00) |
1 (1.00) |
1 (1.00) |
0.187 (1.00) |
0.498 (1.00) |
0.545 (1.00) |
0.861 (1.00) |
3.08e-14 (1.47e-11) |
0.164 (1.00) |
1 (1.00) |
0.124 (1.00) |
|
20q gain |
1 (1.00) |
0.562 (1.00) |
0.575 (1.00) |
0.00381 (1.00) |
1 (1.00) |
1 (1.00) |
0.187 (1.00) |
0.498 (1.00) |
0.545 (1.00) |
0.861 (1.00) |
3.08e-14 (1.47e-11) |
0.164 (1.00) |
1 (1.00) |
0.124 (1.00) |
|
1p loss |
1 (1.00) |
0.184 (1.00) |
0.572 (1.00) |
0.378 (1.00) |
1 (1.00) |
1 (1.00) |
0.906 (1.00) |
0.594 (1.00) |
0.516 (1.00) |
0.905 (1.00) |
0.0339 (1.00) |
0.622 (1.00) |
|||
2p loss |
1 (1.00) |
0.195 (1.00) |
0.682 (1.00) |
0.0369 (1.00) |
1 (1.00) |
1 (1.00) |
0.248 (1.00) |
0.291 (1.00) |
0.103 (1.00) |
0.802 (1.00) |
2.86e-14 (1.41e-11) |
0.00421 (1.00) |
1 (1.00) |
0.948 (1.00) |
|
2q loss |
1 (1.00) |
0.0385 (1.00) |
1 (1.00) |
0.0106 (1.00) |
1 (1.00) |
1 (1.00) |
0.362 (1.00) |
0.349 (1.00) |
0.16 (1.00) |
0.764 (1.00) |
2.91e-14 (1.42e-11) |
0.000772 (0.36) |
0.684 (1.00) |
0.439 (1.00) |
|
3q loss |
1 (1.00) |
0.204 (1.00) |
1 (1.00) |
0.0239 (1.00) |
1 (1.00) |
1 (1.00) |
0.286 (1.00) |
0.594 (1.00) |
0.516 (1.00) |
0.905 (1.00) |
3.08e-14 (1.47e-11) |
0.0339 (1.00) |
1 (1.00) |
0.17 (1.00) |
|
9p loss |
1 (1.00) |
0.909 (1.00) |
0.333 (1.00) |
0.557 (1.00) |
1 (1.00) |
1 (1.00) |
0.944 (1.00) |
0.417 (1.00) |
0.54 (1.00) |
0.815 (1.00) |
0.439 (1.00) |
7.71e-05 (0.0362) |
0.684 (1.00) |
0.863 (1.00) |
|
9q loss |
1 (1.00) |
0.347 (1.00) |
0.682 (1.00) |
0.0837 (1.00) |
0.301 (1.00) |
0.275 (1.00) |
0.655 (1.00) |
0.291 (1.00) |
0.521 (1.00) |
0.722 (1.00) |
0.76 (1.00) |
1.88e-05 (0.00884) |
0.723 (1.00) |
0.985 (1.00) |
|
10p loss |
1 (1.00) |
0.0334 (1.00) |
1 (1.00) |
0.378 (1.00) |
1 (1.00) |
1 (1.00) |
0.906 (1.00) |
0.594 (1.00) |
0.516 (1.00) |
0.905 (1.00) |
0.0339 (1.00) |
1 (1.00) |
|||
10q loss |
1 (1.00) |
0.0334 (1.00) |
1 (1.00) |
0.378 (1.00) |
1 (1.00) |
1 (1.00) |
0.906 (1.00) |
0.594 (1.00) |
0.516 (1.00) |
0.905 (1.00) |
0.0339 (1.00) |
1 (1.00) |
|||
11p loss |
0.00468 (1.00) |
0.031 (1.00) |
0.273 (1.00) |
0.208 (1.00) |
0.184 (1.00) |
1 (1.00) |
0.187 (1.00) |
0.498 (1.00) |
0.36 (1.00) |
0.576 (1.00) |
3.02e-14 (1.46e-11) |
0.515 (1.00) |
0.622 (1.00) |
0.238 (1.00) |
|
11q loss |
0.00468 (1.00) |
0.0187 (1.00) |
0.109 (1.00) |
0.111 (1.00) |
0.225 (1.00) |
1 (1.00) |
0.122 (1.00) |
0.417 (1.00) |
0.243 (1.00) |
0.694 (1.00) |
2.97e-14 (1.44e-11) |
0.186 (1.00) |
1 (1.00) |
0.238 (1.00) |
|
13q loss |
0.00468 (1.00) |
0.0339 (1.00) |
0.242 (1.00) |
0.064 (1.00) |
0.37 (1.00) |
0.00325 (1.00) |
0.364 (1.00) |
0.59 (1.00) |
0.135 (1.00) |
0.943 (1.00) |
2.81e-14 (1.39e-11) |
0.173 (1.00) |
0.501 (1.00) |
0.478 (1.00) |
|
15q loss |
1 (1.00) |
0.412 (1.00) |
0.572 (1.00) |
0.0497 (1.00) |
1 (1.00) |
1 (1.00) |
0.286 (1.00) |
0.594 (1.00) |
0.516 (1.00) |
0.905 (1.00) |
3.08e-14 (1.47e-11) |
0.0339 (1.00) |
1 (1.00) |
0.407 (1.00) |
|
17p loss |
1 (1.00) |
0.537 (1.00) |
0.575 (1.00) |
0.606 (1.00) |
0.0128 (1.00) |
1 (1.00) |
0.709 (1.00) |
0.00239 (1.00) |
0.213 (1.00) |
0.861 (1.00) |
0.556 (1.00) |
0.0835 (1.00) |
0.37 (1.00) |
0.242 (1.00) |
|
18p loss |
1 (1.00) |
0.958 (1.00) |
0.572 (1.00) |
0.886 (1.00) |
1 (1.00) |
1 (1.00) |
0.906 (1.00) |
0.594 (1.00) |
0.865 (1.00) |
0.905 (1.00) |
0.0561 (1.00) |
0.0502 (1.00) |
0.622 (1.00) |
0.976 (1.00) |
|
18q loss |
1 (1.00) |
0.958 (1.00) |
0.572 (1.00) |
0.886 (1.00) |
1 (1.00) |
1 (1.00) |
0.906 (1.00) |
0.594 (1.00) |
0.865 (1.00) |
0.905 (1.00) |
0.0561 (1.00) |
0.0502 (1.00) |
0.622 (1.00) |
0.976 (1.00) |
|
21q loss |
1 (1.00) |
0.0273 (1.00) |
0.606 (1.00) |
0.414 (1.00) |
1 (1.00) |
1 (1.00) |
0.516 (1.00) |
0.417 (1.00) |
0.54 (1.00) |
0.694 (1.00) |
0.993 (1.00) |
0.00626 (1.00) |
0.37 (1.00) |
0.797 (1.00) |
|
22q loss |
1 (1.00) |
0.408 (1.00) |
1 (1.00) |
0.000848 (0.395) |
0.229 (1.00) |
1 (1.00) |
0.648 (1.00) |
0.112 (1.00) |
0.17 (1.00) |
0.784 (1.00) |
0.462 (1.00) |
0.545 (1.00) |
0.21 (1.00) |
0.627 (1.00) |
Table S1. Get Full Table Description of clustering approach #1: '1q gain mutation analysis'
Cluster Labels | 1Q GAIN MUTATED | 1Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 8 | 276 |
Table S2. Get Full Table Description of clustering approach #2: '4p gain mutation analysis'
Cluster Labels | 4P GAIN MUTATED | 4P GAIN WILD-TYPE |
---|---|---|
Number of samples | 4 | 280 |
P value = 3.02e-14 (t-test), Q value = 1.5e-11
Table S3. Clustering Approach #2: '4p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
4P GAIN MUTATED | 4 | 0.0 (0.0) |
4P GAIN WILD-TYPE | 221 | 2.9 (5.3) |
Figure S1. Get High-res Image Clustering Approach #2: '4p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S4. Get Full Table Description of clustering approach #3: '4q gain mutation analysis'
Cluster Labels | 4Q GAIN MUTATED | 4Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 4 | 280 |
P value = 3.02e-14 (t-test), Q value = 1.5e-11
Table S5. Clustering Approach #3: '4q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
4Q GAIN MUTATED | 4 | 0.0 (0.0) |
4Q GAIN WILD-TYPE | 221 | 2.9 (5.3) |
Figure S2. Get High-res Image Clustering Approach #3: '4q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S6. Get Full Table Description of clustering approach #4: '5p gain mutation analysis'
Cluster Labels | 5P GAIN MUTATED | 5P GAIN WILD-TYPE |
---|---|---|
Number of samples | 8 | 276 |
P value = 2.86e-14 (t-test), Q value = 1.4e-11
Table S7. Clustering Approach #4: '5p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
5P GAIN MUTATED | 7 | 0.0 (0.0) |
5P GAIN WILD-TYPE | 218 | 2.9 (5.3) |
Figure S3. Get High-res Image Clustering Approach #4: '5p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S8. Get Full Table Description of clustering approach #5: '5q gain mutation analysis'
Cluster Labels | 5Q GAIN MUTATED | 5Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 8 | 276 |
P value = 2.86e-14 (t-test), Q value = 1.4e-11
Table S9. Clustering Approach #5: '5q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
5Q GAIN MUTATED | 7 | 0.0 (0.0) |
5Q GAIN WILD-TYPE | 218 | 2.9 (5.3) |
Figure S4. Get High-res Image Clustering Approach #5: '5q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S10. Get Full Table Description of clustering approach #6: '7p gain mutation analysis'
Cluster Labels | 7P GAIN MUTATED | 7P GAIN WILD-TYPE |
---|---|---|
Number of samples | 10 | 274 |
P value = 2.75e-14 (t-test), Q value = 1.4e-11
Table S11. Clustering Approach #6: '7p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
7P GAIN MUTATED | 9 | 0.0 (0.0) |
7P GAIN WILD-TYPE | 216 | 2.9 (5.3) |
Figure S5. Get High-res Image Clustering Approach #6: '7p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S12. Get Full Table Description of clustering approach #7: '7q gain mutation analysis'
Cluster Labels | 7Q GAIN MUTATED | 7Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 12 | 272 |
P value = 2.75e-14 (t-test), Q value = 1.4e-11
Table S13. Clustering Approach #7: '7q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
7Q GAIN MUTATED | 9 | 0.0 (0.0) |
7Q GAIN WILD-TYPE | 216 | 2.9 (5.3) |
Figure S6. Get High-res Image Clustering Approach #7: '7q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S14. Get Full Table Description of clustering approach #8: '11p gain mutation analysis'
Cluster Labels | 11P GAIN MUTATED | 11P GAIN WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
P value = 3e-04 (Chi-square test), Q value = 0.14
Table S15. Clustering Approach #8: '11p gain mutation analysis' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | OTHER | THYROID PAPILLARY CARCINOMA - CLASSICAL/USUAL | THYROID PAPILLARY CARCINOMA - FOLLICULAR (>= 99% FOLLICULAR PATTERNED) | THYROID PAPILLARY CARCINOMA - TALL CELL (>= 50% TALL CELL FEATURES) |
---|---|---|---|---|
ALL | 18 | 167 | 69 | 30 |
11P GAIN MUTATED | 2 | 1 | 0 | 0 |
11P GAIN WILD-TYPE | 16 | 166 | 69 | 30 |
Figure S7. Get High-res Image Clustering Approach #8: '11p gain mutation analysis' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

Table S16. Get Full Table Description of clustering approach #9: '12p gain mutation analysis'
Cluster Labels | 12P GAIN MUTATED | 12P GAIN WILD-TYPE |
---|---|---|
Number of samples | 9 | 275 |
P value = 2.86e-14 (t-test), Q value = 1.4e-11
Table S17. Clustering Approach #9: '12p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
12P GAIN MUTATED | 7 | 0.0 (0.0) |
12P GAIN WILD-TYPE | 218 | 2.9 (5.3) |
Figure S8. Get High-res Image Clustering Approach #9: '12p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S18. Get Full Table Description of clustering approach #10: '12q gain mutation analysis'
Cluster Labels | 12Q GAIN MUTATED | 12Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 9 | 275 |
P value = 2.86e-14 (t-test), Q value = 1.4e-11
Table S19. Clustering Approach #10: '12q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
12Q GAIN MUTATED | 7 | 0.0 (0.0) |
12Q GAIN WILD-TYPE | 218 | 2.9 (5.3) |
Figure S9. Get High-res Image Clustering Approach #10: '12q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S20. Get Full Table Description of clustering approach #11: '14q gain mutation analysis'
Cluster Labels | 14Q GAIN MUTATED | 14Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 5 | 279 |
P value = 3.02e-14 (t-test), Q value = 1.5e-11
Table S21. Clustering Approach #11: '14q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
14Q GAIN MUTATED | 4 | 0.0 (0.0) |
14Q GAIN WILD-TYPE | 221 | 2.9 (5.3) |
Figure S10. Get High-res Image Clustering Approach #11: '14q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S22. Get Full Table Description of clustering approach #12: '16p gain mutation analysis'
Cluster Labels | 16P GAIN MUTATED | 16P GAIN WILD-TYPE |
---|---|---|
Number of samples | 7 | 277 |
P value = 2.97e-14 (t-test), Q value = 1.4e-11
Table S23. Clustering Approach #12: '16p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
16P GAIN MUTATED | 5 | 0.0 (0.0) |
16P GAIN WILD-TYPE | 220 | 2.9 (5.3) |
Figure S11. Get High-res Image Clustering Approach #12: '16p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S24. Get Full Table Description of clustering approach #13: '16q gain mutation analysis'
Cluster Labels | 16Q GAIN MUTATED | 16Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 5 | 279 |
P value = 3.02e-14 (t-test), Q value = 1.5e-11
Table S25. Clustering Approach #13: '16q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
16Q GAIN MUTATED | 4 | 0.0 (0.0) |
16Q GAIN WILD-TYPE | 221 | 2.9 (5.3) |
Figure S12. Get High-res Image Clustering Approach #13: '16q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S26. Get Full Table Description of clustering approach #14: '17p gain mutation analysis'
Cluster Labels | 17P GAIN MUTATED | 17P GAIN WILD-TYPE |
---|---|---|
Number of samples | 7 | 277 |
P value = 2.91e-14 (t-test), Q value = 1.4e-11
Table S27. Clustering Approach #14: '17p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
17P GAIN MUTATED | 6 | 0.0 (0.0) |
17P GAIN WILD-TYPE | 219 | 2.9 (5.3) |
Figure S13. Get High-res Image Clustering Approach #14: '17p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S28. Get Full Table Description of clustering approach #15: '17q gain mutation analysis'
Cluster Labels | 17Q GAIN MUTATED | 17Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 8 | 276 |
P value = 2.86e-14 (t-test), Q value = 1.4e-11
Table S29. Clustering Approach #15: '17q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
17Q GAIN MUTATED | 7 | 0.0 (0.0) |
17Q GAIN WILD-TYPE | 218 | 2.9 (5.3) |
Figure S14. Get High-res Image Clustering Approach #15: '17q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S30. Get Full Table Description of clustering approach #16: '19p gain mutation analysis'
Cluster Labels | 19P GAIN MUTATED | 19P GAIN WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
P value = 1.02e-09 (Chi-square test), Q value = 4.8e-07
Table S31. Clustering Approach #16: '19p gain mutation analysis' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | OTHER | THYROID PAPILLARY CARCINOMA - CLASSICAL/USUAL | THYROID PAPILLARY CARCINOMA - FOLLICULAR (>= 99% FOLLICULAR PATTERNED) | THYROID PAPILLARY CARCINOMA - TALL CELL (>= 50% TALL CELL FEATURES) |
---|---|---|---|---|
ALL | 18 | 167 | 69 | 30 |
19P GAIN MUTATED | 3 | 0 | 0 | 0 |
19P GAIN WILD-TYPE | 15 | 167 | 69 | 30 |
Figure S15. Get High-res Image Clustering Approach #16: '19p gain mutation analysis' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 3.08e-14 (t-test), Q value = 1.5e-11
Table S32. Clustering Approach #16: '19p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
19P GAIN MUTATED | 3 | 0.0 (0.0) |
19P GAIN WILD-TYPE | 222 | 2.9 (5.3) |
Figure S16. Get High-res Image Clustering Approach #16: '19p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S33. Get Full Table Description of clustering approach #17: '19q gain mutation analysis'
Cluster Labels | 19Q GAIN MUTATED | 19Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 4 | 280 |
P value = 4.35e-07 (Chi-square test), Q value = 0.00021
Table S34. Clustering Approach #17: '19q gain mutation analysis' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'
nPatients | OTHER | THYROID PAPILLARY CARCINOMA - CLASSICAL/USUAL | THYROID PAPILLARY CARCINOMA - FOLLICULAR (>= 99% FOLLICULAR PATTERNED) | THYROID PAPILLARY CARCINOMA - TALL CELL (>= 50% TALL CELL FEATURES) |
---|---|---|---|---|
ALL | 18 | 167 | 69 | 30 |
19Q GAIN MUTATED | 3 | 1 | 0 | 0 |
19Q GAIN WILD-TYPE | 15 | 166 | 69 | 30 |
Figure S17. Get High-res Image Clustering Approach #17: '19q gain mutation analysis' versus Clinical Feature #4: 'HISTOLOGICAL.TYPE'

P value = 3.02e-14 (t-test), Q value = 1.5e-11
Table S35. Clustering Approach #17: '19q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
19Q GAIN MUTATED | 4 | 0.0 (0.0) |
19Q GAIN WILD-TYPE | 221 | 2.9 (5.3) |
Figure S18. Get High-res Image Clustering Approach #17: '19q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S36. Get Full Table Description of clustering approach #18: '20p gain mutation analysis'
Cluster Labels | 20P GAIN MUTATED | 20P GAIN WILD-TYPE |
---|---|---|
Number of samples | 4 | 280 |
P value = 3.08e-14 (t-test), Q value = 1.5e-11
Table S37. Clustering Approach #18: '20p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
20P GAIN MUTATED | 3 | 0.0 (0.0) |
20P GAIN WILD-TYPE | 222 | 2.9 (5.3) |
Figure S19. Get High-res Image Clustering Approach #18: '20p gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S38. Get Full Table Description of clustering approach #19: '20q gain mutation analysis'
Cluster Labels | 20Q GAIN MUTATED | 20Q GAIN WILD-TYPE |
---|---|---|
Number of samples | 4 | 280 |
P value = 3.08e-14 (t-test), Q value = 1.5e-11
Table S39. Clustering Approach #19: '20q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
20Q GAIN MUTATED | 3 | 0.0 (0.0) |
20Q GAIN WILD-TYPE | 222 | 2.9 (5.3) |
Figure S20. Get High-res Image Clustering Approach #19: '20q gain mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S40. Get Full Table Description of clustering approach #20: '1p loss mutation analysis'
Cluster Labels | 1P LOSS MUTATED | 1P LOSS WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
Table S41. Get Full Table Description of clustering approach #21: '2p loss mutation analysis'
Cluster Labels | 2P LOSS MUTATED | 2P LOSS WILD-TYPE |
---|---|---|
Number of samples | 7 | 277 |
P value = 2.86e-14 (t-test), Q value = 1.4e-11
Table S42. Clustering Approach #21: '2p loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
2P LOSS MUTATED | 7 | 0.0 (0.0) |
2P LOSS WILD-TYPE | 218 | 2.9 (5.3) |
Figure S21. Get High-res Image Clustering Approach #21: '2p loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S43. Get Full Table Description of clustering approach #22: '2q loss mutation analysis'
Cluster Labels | 2Q LOSS MUTATED | 2Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 6 | 278 |
P value = 2.91e-14 (t-test), Q value = 1.4e-11
Table S44. Clustering Approach #22: '2q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
2Q LOSS MUTATED | 6 | 0.0 (0.0) |
2Q LOSS WILD-TYPE | 219 | 2.9 (5.3) |
Figure S22. Get High-res Image Clustering Approach #22: '2q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S45. Get Full Table Description of clustering approach #23: '3q loss mutation analysis'
Cluster Labels | 3Q LOSS MUTATED | 3Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
P value = 3.08e-14 (t-test), Q value = 1.5e-11
Table S46. Clustering Approach #23: '3q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
3Q LOSS MUTATED | 3 | 0.0 (0.0) |
3Q LOSS WILD-TYPE | 222 | 2.9 (5.3) |
Figure S23. Get High-res Image Clustering Approach #23: '3q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S47. Get Full Table Description of clustering approach #24: '9p loss mutation analysis'
Cluster Labels | 9P LOSS MUTATED | 9P LOSS WILD-TYPE |
---|---|---|
Number of samples | 5 | 279 |
P value = 7.71e-05 (Chi-square test), Q value = 0.036
Table S48. Clustering Approach #24: '9p loss mutation analysis' versus Clinical Feature #13: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVC |
---|---|---|---|---|---|
ALL | 161 | 32 | 62 | 25 | 3 |
9P LOSS MUTATED | 1 | 4 | 0 | 0 | 0 |
9P LOSS WILD-TYPE | 160 | 28 | 62 | 25 | 3 |
Figure S24. Get High-res Image Clustering Approach #24: '9p loss mutation analysis' versus Clinical Feature #13: 'NEOPLASM.DISEASESTAGE'

Table S49. Get Full Table Description of clustering approach #25: '9q loss mutation analysis'
Cluster Labels | 9Q LOSS MUTATED | 9Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 7 | 277 |
P value = 1.88e-05 (Chi-square test), Q value = 0.0088
Table S50. Clustering Approach #25: '9q loss mutation analysis' versus Clinical Feature #13: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IVA | STAGE IVC |
---|---|---|---|---|---|
ALL | 161 | 32 | 62 | 25 | 3 |
9Q LOSS MUTATED | 1 | 5 | 0 | 1 | 0 |
9Q LOSS WILD-TYPE | 160 | 27 | 62 | 24 | 3 |
Figure S25. Get High-res Image Clustering Approach #25: '9q loss mutation analysis' versus Clinical Feature #13: 'NEOPLASM.DISEASESTAGE'

Table S51. Get Full Table Description of clustering approach #26: '10p loss mutation analysis'
Cluster Labels | 10P LOSS MUTATED | 10P LOSS WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
Table S52. Get Full Table Description of clustering approach #27: '10q loss mutation analysis'
Cluster Labels | 10Q LOSS MUTATED | 10Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
Table S53. Get Full Table Description of clustering approach #28: '11p loss mutation analysis'
Cluster Labels | 11P LOSS MUTATED | 11P LOSS WILD-TYPE |
---|---|---|
Number of samples | 4 | 280 |
P value = 3.02e-14 (t-test), Q value = 1.5e-11
Table S54. Clustering Approach #28: '11p loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
11P LOSS MUTATED | 4 | 0.0 (0.0) |
11P LOSS WILD-TYPE | 221 | 2.9 (5.3) |
Figure S26. Get High-res Image Clustering Approach #28: '11p loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S55. Get Full Table Description of clustering approach #29: '11q loss mutation analysis'
Cluster Labels | 11Q LOSS MUTATED | 11Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 5 | 279 |
P value = 2.97e-14 (t-test), Q value = 1.4e-11
Table S56. Clustering Approach #29: '11q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
11Q LOSS MUTATED | 5 | 0.0 (0.0) |
11Q LOSS WILD-TYPE | 220 | 2.9 (5.3) |
Figure S27. Get High-res Image Clustering Approach #29: '11q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S57. Get Full Table Description of clustering approach #30: '13q loss mutation analysis'
Cluster Labels | 13Q LOSS MUTATED | 13Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 9 | 275 |
P value = 2.81e-14 (t-test), Q value = 1.4e-11
Table S58. Clustering Approach #30: '13q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
13Q LOSS MUTATED | 8 | 0.0 (0.0) |
13Q LOSS WILD-TYPE | 217 | 2.9 (5.3) |
Figure S28. Get High-res Image Clustering Approach #30: '13q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S59. Get Full Table Description of clustering approach #31: '15q loss mutation analysis'
Cluster Labels | 15Q LOSS MUTATED | 15Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
P value = 3.08e-14 (t-test), Q value = 1.5e-11
Table S60. Clustering Approach #31: '15q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 225 | 2.8 (5.2) |
15Q LOSS MUTATED | 3 | 0.0 (0.0) |
15Q LOSS WILD-TYPE | 222 | 2.9 (5.3) |
Figure S29. Get High-res Image Clustering Approach #31: '15q loss mutation analysis' versus Clinical Feature #11: 'NUMBER.OF.LYMPH.NODES'

Table S61. Get Full Table Description of clustering approach #32: '17p loss mutation analysis'
Cluster Labels | 17P LOSS MUTATED | 17P LOSS WILD-TYPE |
---|---|---|
Number of samples | 4 | 280 |
Table S62. Get Full Table Description of clustering approach #33: '18p loss mutation analysis'
Cluster Labels | 18P LOSS MUTATED | 18P LOSS WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
Table S63. Get Full Table Description of clustering approach #34: '18q loss mutation analysis'
Cluster Labels | 18Q LOSS MUTATED | 18Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 3 | 281 |
Table S64. Get Full Table Description of clustering approach #35: '21q loss mutation analysis'
Cluster Labels | 21Q LOSS MUTATED | 21Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 5 | 279 |
Table S65. Get Full Table Description of clustering approach #36: '22q loss mutation analysis'
Cluster Labels | 22Q LOSS MUTATED | 22Q LOSS WILD-TYPE |
---|---|---|
Number of samples | 36 | 248 |
-
Cluster data file = broad_values_by_arm.mutsig.cluster.txt
-
Clinical data file = THCA-TP.clin.merged.picked.txt
-
Number of patients = 284
-
Number of clustering approaches = 36
-
Number of selected clinical features = 15
-
Exclude small clusters that include fewer than K patients, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.