Correlation between gene mutation status and molecular subtypes
Bladder Urothelial Carcinoma (Primary solid tumor)
22 February 2013  |  analyses__2013_02_22
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between gene mutation status and molecular subtypes. Broad Institute of MIT and Harvard. doi:10.7908/C1H41PKC
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and molecular subtypes.

Summary

Testing the association between mutation status of 3 genes and 8 molecular subtypes across 28 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

  • No gene mutations related to molecuar subtypes.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 3 genes and 8 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.

Clinical
Features
CN
CNMF
METHLYATION
CNMF
RPPA
CNMF
RPPA
CHIERARCHICAL
MRNASEQ
CNMF
MRNASEQ
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
nMutated (%) nWild-Type Chi-square test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
TP53 11 (39%) 17 0.0685
(1.00)
0.179
(1.00)
0.553
(1.00)
0.0447
(0.92)
0.0438
(0.92)
0.743
(1.00)
0.588
(1.00)
0.125
(1.00)
FBXW7 5 (18%) 23 0.025
(0.579)
0.0241
(0.579)
0.651
(1.00)
0.695
(1.00)
0.123
(1.00)
0.0372
(0.817)
1
(1.00)
0.5
(1.00)
NFE2L2 4 (14%) 24 0.267
(1.00)
0.435
(1.00)
0.212
(1.00)
1
(1.00)
0.791
(1.00)
0.36
(1.00)
0.315
(1.00)
0.5
(1.00)
Methods & Data
Input
  • Mutation data file = BLCA-TP.mutsig.cluster.txt

  • Molecular subtypes file = BLCA-TP.transferedmergedcluster.txt

  • Number of patients = 28

  • Number of significantly mutated genes = 3

  • Number of Molecular subtypes = 8

  • Exclude genes that fewer than K tumors have mutations, K = 3

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[2] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[3] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)