Correlation between molecular cancer subtypes and selected clinical features
Prostate Adenocarcinoma (Primary solid tumor)
21 April 2013  |  analyses__2013_04_21
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Prostate Adenocarcinoma (Primary solid tumor cohort) - 21 April 2013: Correlation between molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1542KKD
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 6 different clustering approaches and 5 clinical features across 155 patients, 3 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'AGE' and 'NUMBER.OF.LYMPH.NODES'.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 6 different clustering approaches and 5 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 3 significant findings detected.

Clinical
Features
Time
to
Death
AGE RADIATIONS
RADIATION
REGIMENINDICATION
COMPLETENESS
OF
RESECTION
NUMBER
OF
LYMPH
NODES
Statistical Tests logrank test ANOVA Fisher's exact test Chi-square test ANOVA
Copy Number Ratio CNMF subtypes 100
(1.00)
0.00523
(0.146)
0.85
(1.00)
0.647
(1.00)
0.00288
(0.0837)
METHLYATION CNMF 100
(1.00)
0.00237
(0.0711)
0.862
(1.00)
0.211
(1.00)
0.123
(1.00)
RNAseq CNMF subtypes 100
(1.00)
0.191
(1.00)
0.868
(1.00)
0.258
(1.00)
0.164
(1.00)
RNAseq cHierClus subtypes 100
(1.00)
0.86
(1.00)
0.735
(1.00)
0.166
(1.00)
0.152
(1.00)
MIRSEQ CNMF 100
(1.00)
0.0265
(0.715)
0.466
(1.00)
0.454
(1.00)
0.0459
(1.00)
MIRSEQ CHIERARCHICAL 100
(1.00)
0.399
(1.00)
0.527
(1.00)
0.697
(1.00)
0.387
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Get Full Table Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 28 72 52 2
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 152 1 0.3 - 66.0 (15.0)
subtype1 28 0 0.3 - 63.3 (11.2)
subtype2 72 0 1.0 - 65.9 (16.9)
subtype3 52 1 0.9 - 66.0 (16.3)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.00523 (ANOVA), Q value = 0.15

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 151 60.6 (6.7)
subtype1 28 62.1 (5.7)
subtype2 71 58.8 (7.1)
subtype3 52 62.3 (6.1)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.85 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 147
subtype1 1 27
subtype2 3 69
subtype3 1 51

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'Copy Number Ratio CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.647 (Chi-square test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 RX
ALL 116 29 2
subtype1 19 6 0
subtype2 56 13 2
subtype3 41 10 0

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.00288 (ANOVA), Q value = 0.084

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 133 0.2 (0.7)
subtype1 26 0.0 (0.0)
subtype2 59 0.1 (0.3)
subtype3 48 0.5 (1.2)

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

Clustering Approach #2: 'METHLYATION CNMF'

Table S7.  Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 47 65 43
'METHLYATION CNMF' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 155 1 0.3 - 66.0 (15.0)
subtype1 47 0 0.3 - 65.9 (15.1)
subtype2 65 1 1.0 - 66.0 (16.6)
subtype3 43 0 1.1 - 62.4 (13.9)

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.00237 (ANOVA), Q value = 0.071

Table S9.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 154 60.4 (6.9)
subtype1 46 61.9 (6.3)
subtype2 65 61.4 (6.8)
subtype3 43 57.4 (6.7)

Figure S7.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.862 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 150
subtype1 1 46
subtype2 2 63
subtype3 2 41

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'METHLYATION CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.211 (Chi-square test), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 RX
ALL 118 30 2
subtype1 35 11 0
subtype2 51 11 0
subtype3 32 8 2

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

'METHLYATION CNMF' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.123 (ANOVA), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 136 0.2 (0.7)
subtype1 43 0.2 (0.5)
subtype2 58 0.3 (1.0)
subtype3 35 0.0 (0.2)

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S13.  Get Full Table Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 51 49 53
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S14.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 153 1 0.3 - 66.0 (14.8)
subtype1 51 0 0.3 - 65.9 (16.0)
subtype2 49 0 1.0 - 62.4 (12.8)
subtype3 53 1 1.0 - 66.0 (16.6)

Figure S11.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.191 (ANOVA), Q value = 1

Table S15.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 152 60.5 (6.9)
subtype1 50 60.8 (6.6)
subtype2 49 59.1 (7.1)
subtype3 53 61.5 (6.8)

Figure S12.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.868 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 148
subtype1 1 50
subtype2 2 47
subtype3 2 51

Figure S13.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.258 (Chi-square test), Q value = 1

Table S17.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 RX
ALL 117 29 2
subtype1 39 12 0
subtype2 38 7 2
subtype3 40 10 0

Figure S14.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

'RNAseq CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.164 (ANOVA), Q value = 1

Table S18.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 135 0.2 (0.7)
subtype1 44 0.2 (0.9)
subtype2 44 0.0 (0.2)
subtype3 47 0.3 (0.8)

Figure S15.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S19.  Get Full Table Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 43 64 46
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S20.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 153 1 0.3 - 66.0 (14.8)
subtype1 43 0 1.0 - 65.9 (16.0)
subtype2 64 1 0.9 - 66.0 (14.8)
subtype3 46 0 0.3 - 62.4 (12.4)

Figure S16.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.86 (ANOVA), Q value = 1

Table S21.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 152 60.5 (6.9)
subtype1 42 60.7 (6.9)
subtype2 64 60.7 (6.9)
subtype3 46 60.0 (6.9)

Figure S17.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.735 (Fisher's exact test), Q value = 1

Table S22.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 148
subtype1 1 42
subtype2 3 61
subtype3 1 45

Figure S18.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'RNAseq cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.166 (Chi-square test), Q value = 1

Table S23.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 RX
ALL 117 29 2
subtype1 32 11 0
subtype2 49 12 0
subtype3 36 6 2

Figure S19.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

'RNAseq cHierClus subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.152 (ANOVA), Q value = 1

Table S24.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 135 0.2 (0.7)
subtype1 37 0.2 (1.0)
subtype2 57 0.3 (0.8)
subtype3 41 0.0 (0.2)

Figure S20.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S25.  Get Full Table Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3 4
Number of samples 43 40 26 45
'MIRSEQ CNMF' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S26.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 154 1 0.3 - 66.0 (14.9)
subtype1 43 0 0.9 - 66.0 (16.6)
subtype2 40 0 1.0 - 54.9 (19.1)
subtype3 26 0 0.3 - 64.1 (16.0)
subtype4 45 1 1.0 - 66.0 (5.6)

Figure S21.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.0265 (ANOVA), Q value = 0.71

Table S27.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 153 60.4 (6.9)
subtype1 43 63.0 (6.2)
subtype2 40 58.7 (6.7)
subtype3 26 59.4 (6.8)
subtype4 44 60.0 (7.1)

Figure S22.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.466 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 149
subtype1 2 41
subtype2 2 38
subtype3 1 25
subtype4 0 45

Figure S23.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRSEQ CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.454 (Chi-square test), Q value = 1

Table S29.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 RX
ALL 118 29 2
subtype1 33 10 0
subtype2 30 8 1
subtype3 18 7 0
subtype4 37 4 1

Figure S24.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

'MIRSEQ CNMF' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.0459 (ANOVA), Q value = 1

Table S30.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 135 0.2 (0.7)
subtype1 40 0.5 (1.2)
subtype2 37 0.1 (0.3)
subtype3 21 0.0 (0.2)
subtype4 37 0.1 (0.4)

Figure S25.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S31.  Get Full Table Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 31 59 64
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S32.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 154 1 0.3 - 66.0 (14.9)
subtype1 31 0 0.3 - 64.1 (18.2)
subtype2 59 0 1.0 - 54.9 (19.5)
subtype3 64 1 0.9 - 66.0 (5.6)

Figure S26.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.399 (ANOVA), Q value = 1

Table S33.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 153 60.4 (6.9)
subtype1 30 59.1 (7.1)
subtype2 59 60.3 (6.8)
subtype3 64 61.1 (6.8)

Figure S27.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.527 (Fisher's exact test), Q value = 1

Table S34.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 5 149
subtype1 1 30
subtype2 3 56
subtype3 1 63

Figure S28.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'MIRSEQ CHIERARCHICAL' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.697 (Chi-square test), Q value = 1

Table S35.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 RX
ALL 118 29 2
subtype1 22 8 0
subtype2 46 12 1
subtype3 50 9 1

Figure S29.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'COMPLETENESS.OF.RESECTION'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.387 (ANOVA), Q value = 1

Table S36.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 135 0.2 (0.7)
subtype1 23 0.0 (0.2)
subtype2 55 0.3 (0.8)
subtype3 57 0.2 (0.8)

Figure S30.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'NUMBER.OF.LYMPH.NODES'

Methods & Data
Input
  • Cluster data file = PRAD-TP.mergedcluster.txt

  • Clinical data file = PRAD-TP.clin.merged.picked.txt

  • Number of patients = 155

  • Number of clustering approaches = 6

  • Number of selected clinical features = 5

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)