Correlation between gene mutation status and molecular subtypes
Prostate Adenocarcinoma (Primary solid tumor)
21 April 2013  |  analyses__2013_04_21
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Prostate Adenocarcinoma (Primary solid tumor cohort) - 21 April 2013: Correlation between gene mutation status and molecular subtypes. Broad Institute of MIT and Harvard. doi:10.7908/C1445JF1
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and molecular subtypes.

Summary

Testing the association between mutation status of 13 genes and 6 molecular subtypes across 83 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

  • No gene mutations related to molecuar subtypes.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 13 genes and 6 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.

Clinical
Features
CN
CNMF
METHLYATION
CNMF
MRNASEQ
CNMF
MRNASEQ
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
nMutated (%) nWild-Type Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
NKX3-1 5 (6%) 78 0.177
(1.00)
0.366
(1.00)
0.845
(1.00)
0.583
(1.00)
0.0691
(1.00)
0.18
(1.00)
TP53 5 (6%) 78 0.00583
(0.455)
0.366
(1.00)
0.21
(1.00)
0.117
(1.00)
0.547
(1.00)
0.18
(1.00)
FRG1 4 (5%) 79 0.255
(1.00)
0.57
(1.00)
0.363
(1.00)
0.668
(1.00)
0.357
(1.00)
1
(1.00)
SPOP 4 (5%) 79 0.0148
(1.00)
0.0695
(1.00)
0.0596
(1.00)
0.00937
(0.712)
0.788
(1.00)
0.79
(1.00)
YBX1 3 (4%) 80 0.701
(1.00)
0.225
(1.00)
1
(1.00)
0.295
(1.00)
0.511
(1.00)
0.687
(1.00)
CCNF 3 (4%) 80 1
(1.00)
0.796
(1.00)
0.471
(1.00)
0.436
(1.00)
1
(1.00)
0.687
(1.00)
CLSTN1 3 (4%) 80 1
(1.00)
0.441
(1.00)
0.618
(1.00)
1
(1.00)
0.738
(1.00)
1
(1.00)
PRR21 4 (5%) 79 0.701
(1.00)
0.459
(1.00)
1
(1.00)
1
(1.00)
0.185
(1.00)
0.229
(1.00)
AGT 3 (4%) 80 0.701
(1.00)
1
(1.00)
1
(1.00)
0.771
(1.00)
0.511
(1.00)
0.235
(1.00)
CTNNB1 3 (4%) 80 1
(1.00)
0.603
(1.00)
0.471
(1.00)
0.436
(1.00)
0.356
(1.00)
0.00646
(0.497)
DUSP27 3 (4%) 80 0.513
(1.00)
0.441
(1.00)
0.618
(1.00)
0.583
(1.00)
0.738
(1.00)
0.687
(1.00)
OR4D5 3 (4%) 80 0.224
(1.00)
1
(1.00)
1
(1.00)
0.771
(1.00)
1
(1.00)
0.687
(1.00)
OR6N1 3 (4%) 80 0.364
(1.00)
1
(1.00)
1
(1.00)
0.771
(1.00)
0.173
(1.00)
0.687
(1.00)
Methods & Data
Input
  • Mutation data file = PRAD-TP.mutsig.cluster.txt

  • Molecular subtypes file = PRAD-TP.transferedmergedcluster.txt

  • Number of patients = 83

  • Number of significantly mutated genes = 13

  • Number of Molecular subtypes = 6

  • Exclude genes that fewer than K tumors have mutations, K = 3

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[2] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)