Analysis Overview
Stomach Adenocarcinoma (Primary solid tumor)
21 April 2013  |  analyses__2013_04_21
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Analysis Overview for Stomach Adenocarcinoma (Primary solid tumor cohort) - 21 April 2013. Broad Institute of MIT and Harvard. doi:10.7908/C1S75D9H
Overview
Introduction

This is an overview of Stomach Adenocarcinoma analysis pipelines from Firehose run "21 April 2013".

Summary

Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.

Results
  • Sequence and Copy Number Analyses

    • Copy number analysis (GISTIC2)
      View Report | There were 306 tumor samples used in this analysis: 26 significant arm-level results, 29 significant focal amplifications, and 46 significant focal deletions were found.

    • Mutation Analysis (MutSig v1.5)
      View Report | 

    • Mutation Analysis (MutSig v2.0)
      View Report | 

    • Mutation Analysis (MutSigCV v0.9)
      View Report | 

  • Clustering Analyses

    • Clustering of copy number data by focal peak region with log2 ratio: consensus NMF
      View Report | The most robust consensus NMF clustering of 306 samples using the 75 copy number focal regions was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

    • Clustering of Methylation: consensus NMF
      View Report | The 6210 most variable methylated genes were selected based on variation. The variation cutoff are set for each tumor type empirically by fitting a bimodal distriution. For genes with multiple methylation probes, we chose the most variable one to represent the gene. Consensus NMF clustering of 260 samples and 6210 genes identified 4 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of mRNAseq gene expression: consensus NMF
      View Report | The most robust consensus NMF clustering of 184 samples using the 1500 most variable genes was identified for k = 5 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

    • Clustering of mRNAseq gene expression: consensus hierarchical
      View Report | The 1500 most variable genes were selected. Consensus average linkage hierarchical clustering of 184 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq precursor expression: consensus NMF
      View Report | We filtered the data to 150 most variable miRs. Consensus NMF clustering of 238 samples and 150 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq precursor expression: consensus hierarchical
      View Report | We filtered the data to 150 most variable miRs. Consensus average linkage hierarchical clustering of 238 samples and 150 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

  • Correlation Analyses

    • Correlation between copy number variations of arm-level result and selected clinical features
      View Report | Testing the association between copy number variation 74 arm-level results and 11 clinical features across 180 patients, 4 significant findings detected with Q value < 0.25.

    • Correlation between copy number variation genes (focal) and selected clinical features
      View Report | Testing the association between copy number variation 75 arm-level results and 11 clinical features across 180 patients, no significant finding detected with Q value < 0.25.

    • Correlation between gene methylation status and clinical features
      View Report | Testing the association between 17280 genes and 11 clinical features across 102 samples, statistically thresholded by Q value < 0.05, 8 clinical features related to at least one genes.

    • Correlation between molecular cancer subtypes and selected clinical features
      View Report | Testing the association between subtypes identified by 6 different clustering approaches and 11 clinical features across 181 patients, 6 significant findings detected with P value < 0.05 and Q value < 0.25.

    • Correlation between gene mutation status and selected clinical features
      View Report | Testing the association between mutation status of 47 genes and 10 clinical features across 116 patients, 6 significant findings detected with Q value < 0.25.

    • Correlation between mRNAseq expression and clinical features
      View Report | Testing the association between 23411 genes and 11 clinical features across 147 samples, statistically thresholded by Q value < 0.05, 7 clinical features related to at least one genes.

    • Correlation between miRseq expression and clinical features
      View Report | Testing the association between 515 genes and 11 clinical features across 167 samples, statistically thresholded by Q value < 0.05, 5 clinical features related to at least one genes.

    • Correlations between copy number and mRNAseq expression
      View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are 953.6, 1809, 2340, 2840, 3393, 3965, 4599.2, 5280, 6080.4, respectively.

    • Correlation between mRNA expression and DNA methylation
      View Report | The top 25 correlated methylation probes per gene are displayed. Total number of matched samples = 141. Number of gene expression samples = 184. Number of methylation samples = 141.

    • Correlation between copy number variations of arm-level result and molecular subtypes
      View Report | Testing the association between copy number variation 78 arm-level results and 6 molecular subtypes across 306 patients, 90 significant findings detected with Q value < 0.25.

    • Correlation between copy number variation genes and molecular subtypes
      View Report | Testing the association between copy number variation of 75 peak regions and 6 molecular subtypes across 306 patients, 190 significant findings detected with Q value < 0.25.

    • Correlation between gene mutation status and molecular subtypes
      View Report | Testing the association between mutation status of 47 genes and 6 molecular subtypes across 116 patients, 7 significant findings detected with P value < 0.05 and Q value < 0.25.

  • Pathway Analyses

    • HotNet pathway analysis of mutation and copy number data
      View Report | There were 53 significant subnetworks identified in HotNet analysis.

    • PARADIGM pathway analysis of mRNASeq expression data
      View Report | There were 36 significant pathways identified in this analysis.

    • PARADIGM pathway analysis of mRNASeq expression and copy number data
      View Report | There were 31 significant pathways identified in this analysis.

Methods & Data
Input
  • Summary Report Date = Sat May 25 14:02:19 2013

  • Protection = FALSE