Correlation between aggregated molecular cancer subtypes and selected clinical features
Kidney Renal Papillary Cell Carcinoma (Primary solid tumor)
23 May 2013  |  analyses__2013_05_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1HT2MC4
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 8 clinical features across 104 patients, 9 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 5 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'LYMPH.NODE.METASTASIS' and 'NEOPLASM.DISEASESTAGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'LYMPH.NODE.METASTASIS' and 'NEOPLASM.DISEASESTAGE'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'GENDER',  'LYMPH.NODE.METASTASIS', and 'NEOPLASM.DISEASESTAGE'.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'LYMPH.NODE.METASTASIS' and 'NEOPLASM.DISEASESTAGE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 8 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 9 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER KARNOFSKY
PERFORMANCE
SCORE
DISTANT
METASTASIS
LYMPH
NODE
METASTASIS
TUMOR
STAGECODE
NEOPLASM
DISEASESTAGE
Statistical Tests logrank test ANOVA Fisher's exact test ANOVA Chi-square test Chi-square test ANOVA Chi-square test
Copy Number Ratio CNMF subtypes 0.0309
(1.00)
0.399
(1.00)
0.0797
(1.00)
0.787
(1.00)
0.684
(1.00)
0.027
(0.998)
0.231
(1.00)
METHLYATION CNMF 0.147
(1.00)
0.0601
(1.00)
0.219
(1.00)
0.192
(1.00)
0.099
(1.00)
0.000134
(0.00697)
2.46e-06
(0.000138)
RNAseq CNMF subtypes 0.0331
(1.00)
0.00566
(0.266)
0.0139
(0.544)
0.433
(1.00)
0.0124
(0.498)
0.00147
(0.0705)
7.89e-05
(0.00418)
RNAseq cHierClus subtypes 0.0119
(0.486)
0.495
(1.00)
0.000483
(0.0246)
0.578
(1.00)
0.00843
(0.362)
1.53e-05
(0.000827)
1.4e-05
(0.000772)
MIRSEQ CNMF 0.876
(1.00)
0.542
(1.00)
0.00796
(0.358)
0.51
(1.00)
0.459
(1.00)
0.0618
(1.00)
0.0115
(0.485)
MIRSEQ CHIERARCHICAL 0.668
(1.00)
0.768
(1.00)
0.00802
(0.358)
0.535
(1.00)
0.6
(1.00)
0.071
(1.00)
0.0293
(1.00)
MIRseq Mature CNMF subtypes 0.836
(1.00)
0.471
(1.00)
0.163
(1.00)
0.282
(1.00)
0.121
(1.00)
0.223
(1.00)
0.00749
(0.345)
MIRseq Mature cHierClus subtypes 0.108
(1.00)
0.225
(1.00)
0.0202
(0.767)
0.255
(1.00)
0.167
(1.00)
0.00073
(0.0365)
0.000811
(0.0398)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Get Full Table Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 20 38 9 20 17
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.0309 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 97 14 0.0 - 182.7 (13.7)
subtype1 20 4 0.0 - 80.8 (14.1)
subtype2 34 3 0.2 - 129.9 (21.0)
subtype3 9 1 0.0 - 50.5 (15.5)
subtype4 19 4 0.5 - 25.4 (11.1)
subtype5 15 2 0.6 - 182.7 (32.1)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.399 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 101 59.6 (12.4)
subtype1 20 58.5 (16.0)
subtype2 38 60.7 (12.9)
subtype3 9 52.8 (7.7)
subtype4 19 59.7 (10.9)
subtype5 15 62.7 (8.9)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.0797 (Chi-square test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 70
subtype1 8 12
subtype2 17 21
subtype3 1 8
subtype4 6 14
subtype5 2 15

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.787 (ANOVA), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 22 87.7 (23.3)
subtype1 4 92.5 (5.0)
subtype2 7 87.1 (21.4)
subtype3 3 93.3 (5.8)
subtype4 6 78.3 (38.7)
subtype5 2 100.0 (0.0)

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'Copy Number Ratio CNMF subtypes' versus 'DISTANT.METASTASIS'

P value = 0.684 (Chi-square test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 55 5 36
subtype1 9 2 7
subtype2 21 1 14
subtype3 4 0 4
subtype4 10 2 7
subtype5 11 0 4

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'Copy Number Ratio CNMF subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 0.027 (Chi-square test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 20 12 4 68
subtype1 5 6 1 8
subtype2 5 2 1 30
subtype3 1 0 0 8
subtype4 7 3 2 8
subtype5 2 1 0 14

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.231 (Chi-square test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 53 7 24 9
subtype1 7 1 7 3
subtype2 23 4 7 1
subtype3 5 0 1 0
subtype4 7 1 7 4
subtype5 11 1 2 1

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #2: 'METHLYATION CNMF'

Table S9.  Get Full Table Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 21 40 27
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.147 (logrank test), Q value = 1

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 81 12 0.0 - 182.7 (14.6)
subtype1 19 4 0.0 - 80.8 (26.0)
subtype2 36 2 0.0 - 129.9 (14.4)
subtype3 26 6 0.2 - 182.7 (13.3)

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.0601 (ANOVA), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 85 60.0 (12.6)
subtype1 20 65.7 (10.9)
subtype2 39 57.6 (10.0)
subtype3 26 59.2 (15.9)

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.219 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 30 58
subtype1 8 13
subtype2 10 30
subtype3 12 15

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.192 (ANOVA), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 21 91.9 (12.9)
subtype1 5 80.0 (22.4)
subtype2 14 95.7 (5.1)
subtype3 2 95.0 (7.1)

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'METHLYATION CNMF' versus 'DISTANT.METASTASIS'

P value = 0.099 (Chi-square test), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 45 4 36
subtype1 12 1 7
subtype2 17 0 21
subtype3 16 3 8

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'METHLYATION CNMF' versus 'LYMPH.NODE.METASTASIS'

P value = 0.000134 (Chi-square test), Q value = 0.007

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 20 10 4 54
subtype1 3 2 1 15
subtype2 8 0 0 32
subtype3 9 8 3 7

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 2.46e-06 (Chi-square test), Q value = 0.00014

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 48 5 23 8
subtype1 14 1 3 2
subtype2 30 3 4 0
subtype3 4 1 16 6

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S17.  Get Full Table Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 26 24 25
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.0331 (logrank test), Q value = 1

Table S18.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 72 13 0.5 - 182.7 (15.1)
subtype1 24 3 0.5 - 54.9 (13.1)
subtype2 23 8 0.9 - 93.3 (13.2)
subtype3 25 2 6.4 - 182.7 (26.0)

Figure S15.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.00566 (ANOVA), Q value = 0.27

Table S19.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 72 59.7 (13.1)
subtype1 24 56.5 (12.1)
subtype2 23 55.8 (14.2)
subtype3 25 66.3 (10.5)

Figure S16.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.0139 (Fisher's exact test), Q value = 0.54

Table S20.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 23 52
subtype1 5 21
subtype2 13 11
subtype3 5 20

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.433 (ANOVA), Q value = 1

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 12 86.7 (27.7)
subtype1 7 94.3 (5.3)
subtype2 3 63.3 (55.1)
subtype3 2 95.0 (7.1)

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq CNMF subtypes' versus 'DISTANT.METASTASIS'

P value = 0.0124 (Chi-square test), Q value = 0.5

Table S22.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 47 5 17
subtype1 15 0 7
subtype2 12 5 6
subtype3 20 0 4

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'RNAseq CNMF subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 0.00147 (Chi-square test), Q value = 0.07

Table S23.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 15 12 3 45
subtype1 2 0 0 24
subtype2 6 8 2 8
subtype3 7 4 1 13

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 7.89e-05 (Chi-square test), Q value = 0.0042

Table S24.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 35 3 21 8
subtype1 19 0 2 0
subtype2 4 1 10 7
subtype3 12 2 9 1

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S25.  Get Full Table Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 18 36 21
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0119 (logrank test), Q value = 0.49

Table S26.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 72 13 0.5 - 182.7 (15.1)
subtype1 17 6 2.8 - 80.8 (10.8)
subtype2 34 3 0.5 - 182.7 (13.8)
subtype3 21 4 0.9 - 123.6 (25.1)

Figure S22.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.495 (ANOVA), Q value = 1

Table S27.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 72 59.7 (13.1)
subtype1 17 57.3 (15.0)
subtype2 34 59.3 (11.7)
subtype3 21 62.3 (13.7)

Figure S23.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.000483 (Fisher's exact test), Q value = 0.025

Table S28.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 23 52
subtype1 11 7
subtype2 4 32
subtype3 8 13

Figure S24.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.578 (ANOVA), Q value = 1

Table S29.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 12 86.7 (27.7)
subtype1 3 93.3 (5.8)
subtype2 7 95.7 (5.3)
subtype3 2 45.0 (63.6)

Figure S25.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq cHierClus subtypes' versus 'DISTANT.METASTASIS'

P value = 0.00843 (Chi-square test), Q value = 0.36

Table S30.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 47 5 17
subtype1 9 4 4
subtype2 20 0 11
subtype3 18 1 2

Figure S26.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'RNAseq cHierClus subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 1.53e-05 (Chi-square test), Q value = 0.00083

Table S31.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 15 12 3 45
subtype1 1 6 2 9
subtype2 4 1 0 31
subtype3 10 5 1 5

Figure S27.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 1.4e-05 (Chi-square test), Q value = 0.00077

Table S32.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 35 3 21 8
subtype1 6 1 3 6
subtype2 24 1 4 1
subtype3 5 1 14 1

Figure S28.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S33.  Get Full Table Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3 4
Number of samples 28 37 22 17
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.876 (logrank test), Q value = 1

Table S34.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 97 14 0.0 - 182.7 (13.7)
subtype1 23 2 0.0 - 96.9 (5.8)
subtype2 35 6 0.2 - 182.7 (19.2)
subtype3 22 2 3.6 - 63.7 (19.9)
subtype4 17 4 0.5 - 123.6 (21.6)

Figure S29.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.542 (ANOVA), Q value = 1

Table S35.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 101 59.6 (12.4)
subtype1 25 60.6 (10.1)
subtype2 37 57.5 (14.3)
subtype3 22 62.2 (11.7)
subtype4 17 59.5 (12.1)

Figure S30.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.00796 (Fisher's exact test), Q value = 0.36

Table S36.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 70
subtype1 7 21
subtype2 16 21
subtype3 2 20
subtype4 9 8

Figure S31.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.51 (ANOVA), Q value = 1

Table S37.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 22 87.7 (23.3)
subtype1 4 95.0 (5.8)
subtype2 12 81.7 (30.4)
subtype3 4 95.0 (5.8)
subtype4 2 95.0 (7.1)

Figure S32.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CNMF' versus 'DISTANT.METASTASIS'

P value = 0.459 (Chi-square test), Q value = 1

Table S38.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 55 5 36
subtype1 13 0 9
subtype2 19 3 15
subtype3 13 0 8
subtype4 10 2 4

Figure S33.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'MIRSEQ CNMF' versus 'LYMPH.NODE.METASTASIS'

P value = 0.0618 (Chi-square test), Q value = 1

Table S39.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 20 12 4 68
subtype1 3 0 0 25
subtype2 6 6 3 22
subtype3 5 3 0 14
subtype4 6 3 1 7

Figure S34.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0115 (Chi-square test), Q value = 0.49

Table S40.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 53 7 24 9
subtype1 17 1 3 0
subtype2 20 3 6 7
subtype3 11 3 7 0
subtype4 5 0 8 2

Figure S35.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S41.  Get Full Table Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4
Number of samples 37 29 10 28
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.668 (logrank test), Q value = 1

Table S42.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 97 14 0.0 - 182.7 (13.7)
subtype1 33 5 0.2 - 129.9 (15.5)
subtype2 29 6 0.9 - 86.7 (14.6)
subtype3 9 1 3.8 - 182.7 (32.1)
subtype4 26 2 0.0 - 123.6 (6.6)

Figure S36.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.768 (ANOVA), Q value = 1

Table S43.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 101 59.6 (12.4)
subtype1 36 58.4 (14.0)
subtype2 29 61.0 (13.6)
subtype3 9 62.2 (10.0)
subtype4 27 59.1 (9.6)

Figure S37.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.00802 (Fisher's exact test), Q value = 0.36

Table S44.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 34 70
subtype1 18 19
subtype2 6 23
subtype3 0 10
subtype4 10 18

Figure S38.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.535 (ANOVA), Q value = 1

Table S45.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 22 87.7 (23.3)
subtype1 11 89.1 (17.0)
subtype2 6 78.3 (38.7)
subtype3 1 100.0 (NA)
subtype4 4 95.0 (5.8)

Figure S39.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CHIERARCHICAL' versus 'DISTANT.METASTASIS'

P value = 0.6 (Chi-square test), Q value = 1

Table S46.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 55 5 36
subtype1 18 3 16
subtype2 19 2 8
subtype3 6 0 3
subtype4 12 0 9

Figure S40.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'MIRSEQ CHIERARCHICAL' versus 'LYMPH.NODE.METASTASIS'

P value = 0.071 (Chi-square test), Q value = 1

Table S47.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 20 12 4 68
subtype1 6 5 3 23
subtype2 9 6 1 13
subtype3 1 1 0 8
subtype4 4 0 0 24

Figure S41.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0293 (Chi-square test), Q value = 1

Table S48.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 53 7 24 9
subtype1 20 3 7 6
subtype2 11 2 14 2
subtype3 8 0 0 1
subtype4 14 2 3 0

Figure S42.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S49.  Get Full Table Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 30 35 23
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.836 (logrank test), Q value = 1

Table S50.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 81 12 0.0 - 182.7 (14.6)
subtype1 29 4 0.0 - 123.6 (26.0)
subtype2 33 6 0.2 - 182.7 (20.1)
subtype3 19 2 0.0 - 51.2 (12.7)

Figure S43.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.471 (ANOVA), Q value = 1

Table S51.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 85 60.0 (12.6)
subtype1 29 62.3 (12.2)
subtype2 35 58.7 (14.5)
subtype3 21 58.9 (9.5)

Figure S44.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.163 (Fisher's exact test), Q value = 1

Table S52.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 30 58
subtype1 7 23
subtype2 16 19
subtype3 7 16

Figure S45.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.282 (ANOVA), Q value = 1

Table S53.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 21 91.9 (12.9)
subtype1 4 95.0 (5.8)
subtype2 9 86.7 (18.0)
subtype3 8 96.2 (5.2)

Figure S46.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq Mature CNMF subtypes' versus 'DISTANT.METASTASIS'

P value = 0.121 (Chi-square test), Q value = 1

Table S54.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 45 4 36
subtype1 20 0 8
subtype2 16 3 16
subtype3 9 1 12

Figure S47.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'MIRseq Mature CNMF subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 0.223 (Chi-square test), Q value = 1

Table S55.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 20 10 4 54
subtype1 10 3 1 16
subtype2 6 6 3 20
subtype3 4 1 0 18

Figure S48.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00749 (Chi-square test), Q value = 0.34

Table S56.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 48 5 23 8
subtype1 12 2 14 0
subtype2 20 2 6 7
subtype3 16 1 3 1

Figure S49.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S57.  Get Full Table Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 37 15 36
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.108 (logrank test), Q value = 1

Table S58.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 81 12 0.0 - 182.7 (14.6)
subtype1 33 1 0.0 - 123.6 (13.6)
subtype2 15 5 0.9 - 86.7 (21.6)
subtype3 33 6 0.2 - 182.7 (20.1)

Figure S50.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.225 (ANOVA), Q value = 1

Table S59.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 85 60.0 (12.6)
subtype1 35 59.7 (9.6)
subtype2 15 64.9 (14.1)
subtype3 35 58.2 (14.3)

Figure S51.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.0202 (Fisher's exact test), Q value = 0.77

Table S60.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 30 58
subtype1 7 30
subtype2 5 10
subtype3 18 18

Figure S52.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.255 (ANOVA), Q value = 1

Table S61.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 21 91.9 (12.9)
subtype1 9 95.6 (5.3)
subtype2 1 90.0 (NA)
subtype3 11 89.1 (17.0)

Figure S53.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq Mature cHierClus subtypes' versus 'DISTANT.METASTASIS'

P value = 0.167 (Chi-square test), Q value = 1

Table S62.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

nPatients M0 M1 MX
ALL 45 4 36
subtype1 17 0 17
subtype2 11 1 3
subtype3 17 3 16

Figure S54.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'DISTANT.METASTASIS'

'MIRseq Mature cHierClus subtypes' versus 'LYMPH.NODE.METASTASIS'

P value = 0.00073 (Chi-square test), Q value = 0.036

Table S63.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

nPatients N0 N1 N2 NX
ALL 20 10 4 54
subtype1 6 0 0 31
subtype2 7 4 1 3
subtype3 7 6 3 20

Figure S55.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'LYMPH.NODE.METASTASIS'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.000811 (Chi-square test), Q value = 0.04

Table S64.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 48 5 23 8
subtype1 25 2 6 0
subtype2 3 1 10 1
subtype3 20 2 7 7

Figure S56.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'NEOPLASM.DISEASESTAGE'

Methods & Data
Input
  • Cluster data file = KIRP-TP.mergedcluster.txt

  • Clinical data file = KIRP-TP.clin.merged.picked.txt

  • Number of patients = 104

  • Number of clustering approaches = 8

  • Number of selected clinical features = 8

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)