This pipeline uses various statistical tests to identify miRs whose expression levels correlated to selected clinical features.
Testing the association between 515 genes and 8 clinical features across 20 samples, statistically thresholded by Q value < 0.05, no clinical feature related to at least one genes.
-
No genes correlated to 'AGE', 'GENDER', 'HISTOLOGICAL.TYPE', 'DISTANT.METASTASIS', 'LYMPH.NODE.METASTASIS', 'COMPLETENESS.OF.RESECTION', 'NUMBER.OF.LYMPH.NODES', and 'NEOPLASM.DISEASESTAGE'.
Complete statistical result table is provided in Supplement Table 1
Table 1. Get Full Table This table shows the clinical features, statistical methods used, and the number of genes that are significantly associated with each clinical feature at Q value < 0.05.
| Clinical feature | Statistical test | Significant genes | Associated with | Associated with | ||
|---|---|---|---|---|---|---|
| AGE | Spearman correlation test | N=0 | ||||
| GENDER | t test | N=0 | ||||
| HISTOLOGICAL TYPE | ANOVA test | N=0 | ||||
| DISTANT METASTASIS | ANOVA test | N=0 | ||||
| LYMPH NODE METASTASIS | t test | N=0 | ||||
| COMPLETENESS OF RESECTION | ANOVA test | N=0 | ||||
| NUMBER OF LYMPH NODES | Spearman correlation test | N=0 | ||||
| NEOPLASM DISEASESTAGE | ANOVA test | N=0 |
Table S1. Basic characteristics of clinical feature: 'AGE'
| AGE | Mean (SD) | 66.35 (9.1) |
| Significant markers | N = 0 |
Table S2. Basic characteristics of clinical feature: 'GENDER'
| GENDER | Labels | N |
| FEMALE | 10 | |
| MALE | 10 | |
| Significant markers | N = 0 |
Table S3. Basic characteristics of clinical feature: 'HISTOLOGICAL.TYPE'
| HISTOLOGICAL.TYPE | Labels | N |
| PANCREAS-ADENOCARCINOMA DUCTAL TYPE | 17 | |
| PANCREAS-ADENOCARCINOMA-OTHER SUBTYPE | 2 | |
| PANCREAS-COLLOID (MUCINOUS NON-CYSTIC) CARCINOMA | 1 | |
| Significant markers | N = 0 |
Table S4. Basic characteristics of clinical feature: 'DISTANT.METASTASIS'
| DISTANT.METASTASIS | Labels | N |
| M0 | 3 | |
| M1 | 1 | |
| MX | 16 | |
| Significant markers | N = 0 |
Table S5. Basic characteristics of clinical feature: 'LYMPH.NODE.METASTASIS'
| LYMPH.NODE.METASTASIS | Labels | N |
| N0 | 8 | |
| N1 | 12 | |
| Significant markers | N = 0 |
Table S6. Basic characteristics of clinical feature: 'COMPLETENESS.OF.RESECTION'
| COMPLETENESS.OF.RESECTION | Labels | N |
| R0 | 13 | |
| R1 | 5 | |
| RX | 2 | |
| Significant markers | N = 0 |
Table S7. Basic characteristics of clinical feature: 'NUMBER.OF.LYMPH.NODES'
| NUMBER.OF.LYMPH.NODES | Mean (SD) | 2.05 (2.9) |
| Significant markers | N = 0 |
-
Expresson data file = PAAD-TP.miRseq_RPKM_log2.txt
-
Clinical data file = PAAD-TP.clin.merged.picked.txt
-
Number of patients = 20
-
Number of genes = 515
-
Number of clinical features = 8
For continuous numerical clinical features, Spearman's rank correlation coefficients (Spearman 1904) and two-tailed P values were estimated using 'cor.test' function in R
For two-class clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the log2-expression levels between the two clinical classes using 't.test' function in R
For multi-class clinical features (ordinal or nominal), one-way analysis of variance (Howell 2002) was applied to compare the log2-expression levels between different clinical classes using 'anova' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
This is an experimental feature. The full results of the analysis summarized in this report can be downloaded from the TCGA Data Coordination Center.