Analysis Overview
Uterine Corpus Endometrioid Carcinoma (Primary solid tumor)
23 May 2013  |  analyses__2013_05_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Analysis Overview for Uterine Corpus Endometrioid Carcinoma (Primary solid tumor cohort) - 23 May 2013. Broad Institute of MIT and Harvard. doi:10.7908/C1J964FW
Overview
Introduction

This is an overview of Uterine Corpus Endometrioid Carcinoma analysis pipelines from Firehose run "23 May 2013".

Summary

Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.

Results
  • Sequence and Copy Number Analyses

    • Copy number analysis (GISTIC2)
      View Report | There were 492 tumor samples used in this analysis: 30 significant arm-level results, 48 significant focal amplifications, and 49 significant focal deletions were found.

    • Mutation Analysis (MutSig v1.5)
      View Report | 

    • Mutation Analysis (MutSig v2.0 and MutSigCV v0.9 merged result)
      View Report | 

    • Mutation Analysis (MutSig v2.0)
      View Report | 

    • Mutation Analysis (MutSigCV v0.9)
      View Report | 

  • Correlations to Clinical Parameters

    • Correlation between aggregated molecular cancer subtypes and selected clinical features
      View Report | Testing the association between subtypes identified by 12 different clustering approaches and 5 clinical features across 462 patients, 23 significant findings detected with P value < 0.05 and Q value < 0.25.

    • Correlation between copy number variation genes (focal) and selected clinical features
      View Report | Testing the association between copy number variation 98 arm-level results and 5 clinical features across 454 patients, 158 significant findings detected with Q value < 0.25.

    • Correlation between copy number variations of arm-level result and selected clinical features
      View Report | Testing the association between copy number variation 79 arm-level results and 5 clinical features across 454 patients, 55 significant findings detected with Q value < 0.25.

    • Correlation between gene methylation status and clinical features
      View Report | Testing the association between 20460 genes and 5 clinical features across 345 samples, statistically thresholded by Q value < 0.05, 5 clinical features related to at least one genes.

    • Correlation between gene mutation status and selected clinical features
      View Report | Testing the association between mutation status of 36 genes and 5 clinical features across 248 patients, 10 significant findings detected with Q value < 0.25.

    • Correlation between miRseq expression and clinical features
      View Report | Testing the association between 556 genes and 5 clinical features across 453 samples, statistically thresholded by Q value < 0.05, 4 clinical features related to at least one genes.

    • Correlation between mRNA expression and clinical features
      View Report | Testing the association between 17814 genes and 5 clinical features across 54 samples, statistically thresholded by Q value < 0.05, 3 clinical features related to at least one genes.

    • Correlation between mRNAseq expression and clinical features
      View Report | Testing the association between 18627 genes and 5 clinical features across 369 samples, statistically thresholded by Q value < 0.05, 5 clinical features related to at least one genes.

    • Correlation between RPPA expression and clinical features
      View Report | Testing the association between 166 genes and 5 clinical features across 200 samples, statistically thresholded by Q value < 0.05, 3 clinical features related to at least one genes.

  • Clustering Analyses

    • Clustering of copy number data by focal peak region with log2 ratio: consensus NMF
      View Report | The most robust consensus NMF clustering of 492 samples using the 98 copy number focal regions was identified for k = 5 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

    • Clustering of Methylation: consensus NMF
      View Report | The 10076 most variable methylated genes were selected based on variation. The variation cutoff are set for each tumor type empirically by fitting a bimodal distriution. For genes with multiple methylation probes, we chose the most variable one to represent the gene. Consensus NMF clustering of 383 samples and 10076 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq mature expression: consensus hierarchical
      View Report | We filtered the data to 175 most variable miRs. Consensus average linkage hierarchical clustering of 363 samples and 175 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq mature expression: consensus NMF
      View Report | We filtered the data to 175 most variable miRs. Consensus NMF clustering of 363 samples and 175 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq precursor expression: consensus hierarchical
      View Report | We filtered the data to 150 most variable miRs. Consensus average linkage hierarchical clustering of 491 samples and 150 miRs identified 4 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq precursor expression: consensus NMF
      View Report | We filtered the data to 150 most variable miRs. Consensus NMF clustering of 491 samples and 150 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of mRNA expression: consensus hierarchical
      View Report | The 1500 most variable genes were selected. Consensus average linkage hierarchical clustering of 54 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of mRNA expression: consensus NMF
      View Report | The most robust consensus NMF clustering of 54 samples using the 1500 most variable genes was identified for k = 4 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

    • Clustering of mRNAseq gene expression: consensus hierarchical
      View Report | The 1500 most variable genes were selected. Consensus average linkage hierarchical clustering of 370 samples and 1500 genes identified 4 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of mRNAseq gene expression: consensus NMF
      View Report | The most robust consensus NMF clustering of 370 samples using the 1500 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

    • Clustering of RPPA data: consensus hierarchical
      View Report | 166 proteins were selected. Consensus average linkage hierarchical clustering of 200 samples and 166 proteins identified 2 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of RPPA data: consensus NMF
      View Report | The most robust consensus NMF clustering of 200 samples using 166 proteins was identified for k = 6 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

  • Pathway Analyses

    • Association of mutation, copy number alteration, and subtype markers with pathways
      View Report | There are 29 genes with significant mutation (Q value <= 0.1) and 395 genes with significant copy number alteration (Q value <= 0.25). The identified marker genes (Q value <= 0.01 or within top 2000) are 238 for subtype 1, 238 for subtype 2, 238 for subtype 3. Pathways significantly enriched with these genes (Q value <= 0.01) are identified :

    • HotNet pathway analysis of mutation and copy number data
      View Report | There were 82 significant subnetworks identified in HotNet analysis.

    • PARADIGM pathway analysis of mRNA expression and copy number data
      View Report | There were 37 significant pathways identified in this analysis.

    • PARADIGM pathway analysis of mRNA expression data
      View Report | There were 61 significant pathways identified in this analysis.

    • PARADIGM pathway analysis of mRNASeq expression and copy number data
      View Report | There were 40 significant pathways identified in this analysis.

    • PARADIGM pathway analysis of mRNASeq expression data
      View Report | There were 50 significant pathways identified in this analysis.

  • Other Correlation Analyses

    • Correlation between copy number variation genes and molecular subtypes
      View Report | Testing the association between copy number variation of 98 peak regions and 12 molecular subtypes across 492 patients, 703 significant findings detected with Q value < 0.25.

    • Correlation between copy number variations of arm-level result and molecular subtypes
      View Report | Testing the association between copy number variation 79 arm-level results and 12 molecular subtypes across 492 patients, 256 significant findings detected with Q value < 0.25.

    • Correlation between gene mutation status and molecular subtypes
      View Report | Testing the association between mutation status of 36 genes and 12 molecular subtypes across 248 patients, 36 significant findings detected with P value < 0.05 and Q value < 0.25.

    • Correlation between mRNA expression and DNA methylation
      View Report | The top 25 correlated methylation probes per gene are displayed. Total number of matched samples = 258. Number of gene expression samples = 370. Number of methylation samples = 383.

    • Correlations between copy number and mRNA expression
      View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are -0.09319, -0.01, 0.05333, 0.1106, 0.16705, 0.2236, 0.2863, 0.35788, 0.4516, respectively.

    • Correlations between copy number and mRNAseq expression
      View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are 997.3, 1530, 1993, 2442, 2950, 3470, 4022, 4628, 5364, respectively.

Methods & Data
Input
  • Summary Report Date = Wed Jun 26 19:15:05 2013

  • Protection = FALSE