Correlation between gene mutation status and molecular subtypes
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and molecular subtypes.

Summary

Testing the association between mutation status of 16 genes and 7 molecular subtypes across 154 patients, 7 significant findings detected with P value < 0.05 and Q value < 0.25.

  • BRAF mutation correlated to 'MRNA_CNMF',  'MRNA_CHIERARCHICAL', and 'CN_CNMF'.

  • KRAS mutation correlated to 'MRNA_CHIERARCHICAL'.

  • TP53 mutation correlated to 'MRNA_CNMF' and 'CN_CNMF'.

  • FBXW7 mutation correlated to 'CN_CNMF'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 16 genes and 7 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 7 significant findings detected.

Clinical
Features
MRNA
CNMF
MRNA
CHIERARCHICAL
CN
CNMF
RPPA
CNMF
RPPA
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
nMutated (%) nWild-Type Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
BRAF 20 (13%) 134 3.29e-07
(3.36e-05)
4.37e-08
(4.5e-06)
9.33e-05
(0.00943)
0.722
(1.00)
0.926
(1.00)
0.462
(1.00)
1
(1.00)
TP53 74 (48%) 80 0.00226
(0.222)
0.013
(1.00)
9.19e-10
(9.56e-08)
0.271
(1.00)
0.38
(1.00)
0.62
(1.00)
1
(1.00)
KRAS 58 (38%) 96 0.0241
(1.00)
0.000638
(0.0638)
0.0552
(1.00)
0.72
(1.00)
0.752
(1.00)
0.626
(1.00)
0.283
(1.00)
FBXW7 29 (19%) 125 0.227
(1.00)
0.0892
(1.00)
0.00223
(0.221)
0.00343
(0.333)
0.233
(1.00)
1
(1.00)
0.474
(1.00)
APC 103 (67%) 51 0.171
(1.00)
0.0187
(1.00)
0.025
(1.00)
0.216
(1.00)
0.388
(1.00)
0.601
(1.00)
0.258
(1.00)
PIK3CA 26 (17%) 128 0.331
(1.00)
0.336
(1.00)
0.00617
(0.592)
0.119
(1.00)
0.332
(1.00)
0.514
(1.00)
0.416
(1.00)
NRAS 15 (10%) 139 0.0773
(1.00)
0.409
(1.00)
0.927
(1.00)
0.465
(1.00)
0.332
(1.00)
1
(1.00)
1
(1.00)
SMAD4 18 (12%) 136 0.304
(1.00)
0.58
(1.00)
0.0558
(1.00)
0.852
(1.00)
0.495
(1.00)
1
(1.00)
1
(1.00)
FAM123B 19 (12%) 135 0.208
(1.00)
0.00622
(0.592)
0.0228
(1.00)
0.286
(1.00)
0.422
(1.00)
0.425
(1.00)
0.338
(1.00)
SOX9 9 (6%) 145 0.235
(1.00)
0.214
(1.00)
0.223
(1.00)
0.231
(1.00)
0.461
(1.00)
1
(1.00)
1
(1.00)
ACVR2A 8 (5%) 146 0.045
(1.00)
0.296
(1.00)
0.0382
(1.00)
0.199
(1.00)
0.668
(1.00)
1
(1.00)
0.162
(1.00)
TNFRSF10C 6 (4%) 148 0.381
(1.00)
0.676
(1.00)
0.299
(1.00)
0.68
(1.00)
0.169
(1.00)
1
(1.00)
1
(1.00)
ACOT4 3 (2%) 151 0.665
(1.00)
0.391
(1.00)
0.462
(1.00)
1
(1.00)
1
(1.00)
SMAD2 10 (6%) 144 0.0995
(1.00)
0.19
(1.00)
0.0277
(1.00)
1
(1.00)
0.377
(1.00)
1
(1.00)
1
(1.00)
PCBP1 4 (3%) 150 0.33
(1.00)
0.552
(1.00)
0.44
(1.00)
1
(1.00)
1
(1.00)
GGT1 3 (2%) 151 0.23
(1.00)
1
(1.00)
1
(1.00)
'BRAF MUTATION STATUS' versus 'MRNA_CNMF'

P value = 3.29e-07 (Fisher's exact test), Q value = 3.4e-05

Table S1.  Gene #3: 'BRAF MUTATION STATUS' versus Clinical Feature #1: 'MRNA_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3 CLUS_4
ALL 34 57 28 22
BRAF MUTATED 14 1 3 0
BRAF WILD-TYPE 20 56 25 22

Figure S1.  Get High-res Image Gene #3: 'BRAF MUTATION STATUS' versus Clinical Feature #1: 'MRNA_CNMF'

'BRAF MUTATION STATUS' versus 'MRNA_CHIERARCHICAL'

P value = 4.37e-08 (Fisher's exact test), Q value = 4.5e-06

Table S2.  Gene #3: 'BRAF MUTATION STATUS' versus Clinical Feature #2: 'MRNA_CHIERARCHICAL'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 53 42 46
BRAF MUTATED 1 16 1
BRAF WILD-TYPE 52 26 45

Figure S2.  Get High-res Image Gene #3: 'BRAF MUTATION STATUS' versus Clinical Feature #2: 'MRNA_CHIERARCHICAL'

'BRAF MUTATION STATUS' versus 'CN_CNMF'

P value = 9.33e-05 (Fisher's exact test), Q value = 0.0094

Table S3.  Gene #3: 'BRAF MUTATION STATUS' versus Clinical Feature #3: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 72 64 16
BRAF MUTATED 2 17 1
BRAF WILD-TYPE 70 47 15

Figure S3.  Get High-res Image Gene #3: 'BRAF MUTATION STATUS' versus Clinical Feature #3: 'CN_CNMF'

'KRAS MUTATION STATUS' versus 'MRNA_CHIERARCHICAL'

P value = 0.000638 (Fisher's exact test), Q value = 0.064

Table S4.  Gene #4: 'KRAS MUTATION STATUS' versus Clinical Feature #2: 'MRNA_CHIERARCHICAL'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 53 42 46
KRAS MUTATED 27 16 7
KRAS WILD-TYPE 26 26 39

Figure S4.  Get High-res Image Gene #4: 'KRAS MUTATION STATUS' versus Clinical Feature #2: 'MRNA_CHIERARCHICAL'

'TP53 MUTATION STATUS' versus 'MRNA_CNMF'

P value = 0.00226 (Fisher's exact test), Q value = 0.22

Table S5.  Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'MRNA_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3 CLUS_4
ALL 34 57 28 22
TP53 MUTATED 12 39 9 10
TP53 WILD-TYPE 22 18 19 12

Figure S5.  Get High-res Image Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #1: 'MRNA_CNMF'

'TP53 MUTATION STATUS' versus 'CN_CNMF'

P value = 9.19e-10 (Fisher's exact test), Q value = 9.6e-08

Table S6.  Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #3: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 72 64 16
TP53 MUTATED 53 13 7
TP53 WILD-TYPE 19 51 9

Figure S6.  Get High-res Image Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #3: 'CN_CNMF'

'FBXW7 MUTATION STATUS' versus 'CN_CNMF'

P value = 0.00223 (Fisher's exact test), Q value = 0.22

Table S7.  Gene #6: 'FBXW7 MUTATION STATUS' versus Clinical Feature #3: 'CN_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3
ALL 72 64 16
FBXW7 MUTATED 6 20 3
FBXW7 WILD-TYPE 66 44 13

Figure S7.  Get High-res Image Gene #6: 'FBXW7 MUTATION STATUS' versus Clinical Feature #3: 'CN_CNMF'

Methods & Data
Input
  • Mutation data file = COAD-TP.mutsig.cluster.txt

  • Molecular subtypes file = COAD-TP.transferedmergedcluster.txt

  • Number of patients = 154

  • Number of significantly mutated genes = 16

  • Number of Molecular subtypes = 7

  • Exclude genes that fewer than K tumors have mutations, K = 3

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[2] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)