Correlation between gene mutation status and selected clinical features
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 18 genes and 6 clinical features across 210 patients, 9 significant findings detected with Q value < 0.25.

  • ATRX mutation correlated to 'AGE' and 'HISTOLOGICAL.TYPE'.

  • IDH1 mutation correlated to 'Time to Death'.

  • TP53 mutation correlated to 'AGE',  'HISTOLOGICAL.TYPE', and 'RADIATIONS.RADIATION.REGIMENINDICATION'.

  • CIC mutation correlated to 'HISTOLOGICAL.TYPE'.

  • FUBP1 mutation correlated to 'HISTOLOGICAL.TYPE'.

  • NOTCH1 mutation correlated to 'HISTOLOGICAL.TYPE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 18 genes and 6 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 9 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER KARNOFSKY
PERFORMANCE
SCORE
HISTOLOGICAL
TYPE
RADIATIONS
RADIATION
REGIMENINDICATION
nMutated (%) nWild-Type logrank test t-test Fisher's exact test t-test Fisher's exact test Fisher's exact test
TP53 109 (52%) 101 0.149
(1.00)
9.69e-07
(9.79e-05)
0.211
(1.00)
0.461
(1.00)
2.41e-06
(0.000241)
0.00202
(0.19)
ATRX 91 (43%) 119 0.108
(1.00)
5.4e-06
(0.000535)
0.483
(1.00)
0.423
(1.00)
0.000209
(0.02)
0.0341
(1.00)
IDH1 158 (75%) 52 1.76e-05
(0.00173)
0.0117
(1.00)
0.00992
(0.893)
0.539
(1.00)
0.00454
(0.422)
0.419
(1.00)
CIC 38 (18%) 172 0.0549
(1.00)
0.703
(1.00)
0.718
(1.00)
0.573
(1.00)
8.82e-08
(9e-06)
0.364
(1.00)
FUBP1 21 (10%) 189 0.697
(1.00)
0.0107
(0.956)
1
(1.00)
0.72
(1.00)
0.000712
(0.0676)
1
(1.00)
NOTCH1 18 (9%) 192 0.834
(1.00)
0.0152
(1.00)
0.328
(1.00)
0.125
(1.00)
0.000119
(0.0116)
0.809
(1.00)
IL32 8 (4%) 202 0.539
(1.00)
0.555
(1.00)
0.732
(1.00)
0.191
(1.00)
1
(1.00)
0.022
(1.00)
IDH2 8 (4%) 202 0.48
(1.00)
0.124
(1.00)
0.732
(1.00)
0.265
(1.00)
1
(1.00)
PIK3CA 19 (9%) 191 0.872
(1.00)
0.458
(1.00)
0.631
(1.00)
0.346
(1.00)
0.104
(1.00)
0.808
(1.00)
PIK3R1 13 (6%) 197 0.2
(1.00)
0.125
(1.00)
0.397
(1.00)
0.662
(1.00)
0.254
(1.00)
0.778
(1.00)
PTEN 12 (6%) 198 0.158
(1.00)
0.0123
(1.00)
0.373
(1.00)
0.268
(1.00)
0.00517
(0.471)
1
(1.00)
CREBZF 4 (2%) 206 0.686
(1.00)
0.217
(1.00)
0.321
(1.00)
0.288
(1.00)
0.469
(1.00)
0.641
(1.00)
PCDHAC2 14 (7%) 196 0.148
(1.00)
0.302
(1.00)
0.162
(1.00)
0.273
(1.00)
0.0382
(1.00)
0.00501
(0.461)
NOX4 5 (2%) 205 0.457
(1.00)
0.491
(1.00)
1
(1.00)
0.736
(1.00)
0.652
(1.00)
ZNF57 6 (3%) 204 0.239
(1.00)
0.767
(1.00)
0.408
(1.00)
0.212
(1.00)
1
(1.00)
EIF1AX 3 (1%) 207 0.385
(1.00)
0.774
(1.00)
0.258
(1.00)
0.118
(1.00)
0.573
(1.00)
DCP1B 4 (2%) 206 0.666
(1.00)
0.0509
(1.00)
0.633
(1.00)
0.687
(1.00)
1
(1.00)
NAB2 4 (2%) 206 0.441
(1.00)
0.532
(1.00)
0.321
(1.00)
0.0673
(1.00)
0.641
(1.00)
'ATRX MUTATION STATUS' versus 'AGE'

P value = 5.4e-06 (t-test), Q value = 0.00053

Table S1.  Gene #2: 'ATRX MUTATION STATUS' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 210 43.0 (13.3)
ATRX MUTATED 91 38.3 (12.0)
ATRX WILD-TYPE 119 46.5 (13.3)

Figure S1.  Get High-res Image Gene #2: 'ATRX MUTATION STATUS' versus Clinical Feature #2: 'AGE'

'ATRX MUTATION STATUS' versus 'HISTOLOGICAL.TYPE'

P value = 0.000209 (Fisher's exact test), Q value = 0.02

Table S2.  Gene #2: 'ATRX MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 65 57 87
ATRX MUTATED 30 36 25
ATRX WILD-TYPE 35 21 62

Figure S2.  Get High-res Image Gene #2: 'ATRX MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'IDH1 MUTATION STATUS' versus 'Time to Death'

P value = 1.76e-05 (logrank test), Q value = 0.0017

Table S3.  Gene #4: 'IDH1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 210 53 0.0 - 211.2 (15.0)
IDH1 MUTATED 158 33 0.0 - 182.3 (17.4)
IDH1 WILD-TYPE 52 20 0.1 - 211.2 (10.0)

Figure S3.  Get High-res Image Gene #4: 'IDH1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

'TP53 MUTATION STATUS' versus 'AGE'

P value = 9.69e-07 (t-test), Q value = 9.8e-05

Table S4.  Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 210 43.0 (13.3)
TP53 MUTATED 109 38.7 (11.8)
TP53 WILD-TYPE 101 47.6 (13.5)

Figure S4.  Get High-res Image Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #2: 'AGE'

'TP53 MUTATION STATUS' versus 'HISTOLOGICAL.TYPE'

P value = 2.41e-06 (Fisher's exact test), Q value = 0.00024

Table S5.  Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 65 57 87
TP53 MUTATED 42 39 27
TP53 WILD-TYPE 23 18 60

Figure S5.  Get High-res Image Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'TP53 MUTATION STATUS' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.00202 (Fisher's exact test), Q value = 0.19

Table S6.  Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 88 122
TP53 MUTATED 57 52
TP53 WILD-TYPE 31 70

Figure S6.  Get High-res Image Gene #5: 'TP53 MUTATION STATUS' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

'CIC MUTATION STATUS' versus 'HISTOLOGICAL.TYPE'

P value = 8.82e-08 (Fisher's exact test), Q value = 9e-06

Table S7.  Gene #6: 'CIC MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 65 57 87
CIC MUTATED 2 5 31
CIC WILD-TYPE 63 52 56

Figure S7.  Get High-res Image Gene #6: 'CIC MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'FUBP1 MUTATION STATUS' versus 'HISTOLOGICAL.TYPE'

P value = 0.000712 (Fisher's exact test), Q value = 0.068

Table S8.  Gene #7: 'FUBP1 MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 65 57 87
FUBP1 MUTATED 2 2 17
FUBP1 WILD-TYPE 63 55 70

Figure S8.  Get High-res Image Gene #7: 'FUBP1 MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'NOTCH1 MUTATION STATUS' versus 'HISTOLOGICAL.TYPE'

P value = 0.000119 (Fisher's exact test), Q value = 0.012

Table S9.  Gene #8: 'NOTCH1 MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients ASTROCYTOMA OLIGOASTROCYTOMA OLIGODENDROGLIOMA
ALL 65 57 87
NOTCH1 MUTATED 1 1 16
NOTCH1 WILD-TYPE 64 56 71

Figure S9.  Get High-res Image Gene #8: 'NOTCH1 MUTATION STATUS' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

Methods & Data
Input
  • Mutation data file = LGG-TP.mutsig.cluster.txt

  • Clinical data file = LGG-TP.clin.merged.picked.txt

  • Number of patients = 210

  • Number of significantly mutated genes = 18

  • Number of selected clinical features = 6

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[3] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)