This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.
Testing the association between subtypes identified by 8 different clustering approaches and 8 clinical features across 119 patients, 4 significant findings detected with P value < 0.05 and Q value < 0.25.
-
3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.
-
CNMF clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'GENDER'.
-
Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'GENDER'.
-
5 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'AGE'.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.
-
3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'AGE'.
Table 1. Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 8 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 4 significant findings detected.
Clinical Features |
Time to Death |
AGE |
NEOPLASM DISEASESTAGE |
PATHOLOGY T STAGE |
PATHOLOGY N STAGE |
PATHOLOGY M STAGE |
GENDER |
COMPLETENESS OF RESECTION |
Statistical Tests | logrank test | ANOVA | Chi-square test | Chi-square test | Fisher's exact test | Chi-square test | Fisher's exact test | Chi-square test |
Copy Number Ratio CNMF subtypes |
0.0959 (1.00) |
0.0236 (1.00) |
0.525 (1.00) |
0.323 (1.00) |
0.488 (1.00) |
0.466 (1.00) |
0.128 (1.00) |
0.339 (1.00) |
METHLYATION CNMF |
0.387 (1.00) |
0.14 (1.00) |
0.49 (1.00) |
0.738 (1.00) |
0.62 (1.00) |
0.218 (1.00) |
0.111 (1.00) |
0.812 (1.00) |
RNAseq CNMF subtypes |
0.455 (1.00) |
0.115 (1.00) |
0.361 (1.00) |
0.0943 (1.00) |
0.771 (1.00) |
0.388 (1.00) |
4.57e-07 (2.92e-05) |
0.345 (1.00) |
RNAseq cHierClus subtypes |
0.535 (1.00) |
0.0083 (0.498) |
0.324 (1.00) |
0.0565 (1.00) |
1 (1.00) |
0.511 (1.00) |
3.17e-05 (0.002) |
0.731 (1.00) |
MIRSEQ CNMF |
0.0907 (1.00) |
0.021 (1.00) |
0.224 (1.00) |
0.71 (1.00) |
0.628 (1.00) |
0.13 (1.00) |
0.168 (1.00) |
0.666 (1.00) |
MIRSEQ CHIERARCHICAL |
0.0492 (1.00) |
0.00404 (0.247) |
0.954 (1.00) |
0.992 (1.00) |
0.704 (1.00) |
0.396 (1.00) |
0.305 (1.00) |
0.396 (1.00) |
MIRseq Mature CNMF subtypes |
0.427 (1.00) |
0.0429 (1.00) |
0.0994 (1.00) |
0.474 (1.00) |
0.163 (1.00) |
0.544 (1.00) |
0.137 (1.00) |
0.517 (1.00) |
MIRseq Mature cHierClus subtypes |
0.131 (1.00) |
0.000702 (0.0435) |
0.825 (1.00) |
0.943 (1.00) |
0.694 (1.00) |
0.295 (1.00) |
0.393 (1.00) |
0.0511 (1.00) |
Table S1. Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 37 | 34 | 46 |
P value = 0.0959 (logrank test), Q value = 1
Table S2. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 114 | 53 | 0.0 - 113.0 (15.7) |
subtype1 | 35 | 17 | 0.1 - 113.0 (14.4) |
subtype2 | 34 | 12 | 0.1 - 107.1 (19.9) |
subtype3 | 45 | 24 | 0.0 - 102.7 (15.1) |
Figure S1. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0236 (ANOVA), Q value = 1
Table S3. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 115 | 61.8 (13.7) |
subtype1 | 36 | 65.6 (12.8) |
subtype2 | 34 | 56.9 (13.1) |
subtype3 | 45 | 62.5 (14.0) |
Figure S2. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.525 (Chi-square test), Q value = 1
Table S4. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 45 | 25 | 2 | 25 | 3 | 4 | 1 | 1 | 1 |
subtype1 | 16 | 8 | 0 | 10 | 0 | 0 | 1 | 1 | 0 |
subtype2 | 16 | 7 | 0 | 6 | 1 | 2 | 0 | 0 | 0 |
subtype3 | 13 | 10 | 2 | 9 | 2 | 2 | 0 | 0 | 1 |
Figure S3. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.323 (Chi-square test), Q value = 1
Table S5. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 48 | 28 | 34 | 6 |
subtype1 | 17 | 8 | 12 | 0 |
subtype2 | 17 | 7 | 7 | 2 |
subtype3 | 14 | 13 | 15 | 4 |
Figure S4. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.488 (Fisher's exact test), Q value = 1
Table S6. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 74 | 3 |
subtype1 | 20 | 1 |
subtype2 | 26 | 0 |
subtype3 | 28 | 2 |
Figure S5. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.466 (Chi-square test), Q value = 1
Table S7. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 90 | 2 | 25 |
subtype1 | 25 | 1 | 11 |
subtype2 | 29 | 0 | 5 |
subtype3 | 36 | 1 | 9 |
Figure S6. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.128 (Fisher's exact test), Q value = 1
Table S8. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 44 | 73 |
subtype1 | 9 | 28 |
subtype2 | 14 | 20 |
subtype3 | 21 | 25 |
Figure S7. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.339 (Chi-square test), Q value = 1
Table S9. Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 93 | 10 | 1 | 8 |
subtype1 | 28 | 3 | 1 | 1 |
subtype2 | 30 | 1 | 0 | 2 |
subtype3 | 35 | 6 | 0 | 5 |
Figure S8. Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Table S10. Description of clustering approach #2: 'METHLYATION CNMF'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 26 | 34 | 50 |
P value = 0.387 (logrank test), Q value = 1
Table S11. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 106 | 49 | 0.0 - 113.0 (14.9) |
subtype1 | 26 | 11 | 0.1 - 107.1 (26.6) |
subtype2 | 33 | 15 | 0.1 - 113.0 (12.9) |
subtype3 | 47 | 23 | 0.0 - 102.7 (14.9) |
Figure S9. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.14 (ANOVA), Q value = 1
Table S12. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 108 | 61.6 (14.0) |
subtype1 | 26 | 59.3 (14.1) |
subtype2 | 34 | 59.1 (15.7) |
subtype3 | 48 | 64.5 (12.3) |
Figure S10. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.49 (Chi-square test), Q value = 1
Table S13. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 40 | 23 | 2 | 24 | 3 | 5 | 1 | 1 | 1 |
subtype1 | 8 | 4 | 0 | 6 | 2 | 3 | 0 | 0 | 0 |
subtype2 | 11 | 7 | 1 | 8 | 1 | 1 | 1 | 0 | 1 |
subtype3 | 21 | 12 | 1 | 10 | 0 | 1 | 0 | 1 | 0 |
Figure S11. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.738 (Chi-square test), Q value = 1
Table S14. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 43 | 26 | 33 | 7 |
subtype1 | 9 | 6 | 8 | 2 |
subtype2 | 11 | 7 | 13 | 3 |
subtype3 | 23 | 13 | 12 | 2 |
Figure S12. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.62 (Fisher's exact test), Q value = 1
Table S15. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 70 | 3 |
subtype1 | 19 | 1 |
subtype2 | 24 | 0 |
subtype3 | 27 | 2 |
Figure S13. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.218 (Chi-square test), Q value = 1
Table S16. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 84 | 2 | 24 |
subtype1 | 19 | 0 | 7 |
subtype2 | 27 | 2 | 5 |
subtype3 | 38 | 0 | 12 |
Figure S14. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.111 (Fisher's exact test), Q value = 1
Table S17. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 44 | 66 |
subtype1 | 14 | 12 |
subtype2 | 15 | 19 |
subtype3 | 15 | 35 |
Figure S15. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.812 (Chi-square test), Q value = 1
Table S18. Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 86 | 9 | 1 | 9 |
subtype1 | 18 | 3 | 0 | 2 |
subtype2 | 28 | 2 | 1 | 3 |
subtype3 | 40 | 4 | 0 | 4 |
Figure S16. Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Table S19. Description of clustering approach #3: 'RNAseq CNMF subtypes'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 30 | 15 | 21 | 22 | 27 |
P value = 0.455 (logrank test), Q value = 1
Table S20. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 112 | 51 | 0.0 - 113.0 (14.9) |
subtype1 | 30 | 14 | 0.1 - 113.0 (17.3) |
subtype2 | 13 | 6 | 0.1 - 60.4 (7.7) |
subtype3 | 20 | 8 | 0.0 - 69.6 (21.8) |
subtype4 | 22 | 10 | 0.4 - 93.7 (16.3) |
subtype5 | 27 | 13 | 0.1 - 102.7 (19.1) |
Figure S17. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.115 (ANOVA), Q value = 1
Table S21. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 113 | 61.5 (13.7) |
subtype1 | 30 | 56.9 (15.9) |
subtype2 | 14 | 60.9 (9.6) |
subtype3 | 21 | 63.4 (12.5) |
subtype4 | 22 | 60.4 (15.6) |
subtype5 | 26 | 66.5 (10.7) |
Figure S18. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.361 (Chi-square test), Q value = 1
Table S22. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 43 | 25 | 2 | 25 | 2 | 5 | 1 | 1 | 1 |
subtype1 | 8 | 9 | 1 | 4 | 1 | 2 | 0 | 0 | 1 |
subtype2 | 2 | 3 | 0 | 7 | 1 | 1 | 0 | 0 | 0 |
subtype3 | 10 | 3 | 0 | 2 | 0 | 1 | 1 | 1 | 0 |
subtype4 | 9 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
subtype5 | 14 | 4 | 1 | 6 | 0 | 1 | 0 | 0 | 0 |
Figure S19. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.0943 (Chi-square test), Q value = 1
Table S23. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 46 | 28 | 33 | 7 |
subtype1 | 8 | 11 | 8 | 2 |
subtype2 | 2 | 3 | 8 | 2 |
subtype3 | 12 | 3 | 4 | 2 |
subtype4 | 9 | 7 | 6 | 0 |
subtype5 | 15 | 4 | 7 | 1 |
Figure S20. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.771 (Chi-square test), Q value = 1
Table S24. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 73 | 3 |
subtype1 | 22 | 1 |
subtype2 | 10 | 0 |
subtype3 | 10 | 1 |
subtype4 | 13 | 0 |
subtype5 | 18 | 1 |
Figure S21. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.388 (Chi-square test), Q value = 1
Table S25. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 88 | 2 | 25 |
subtype1 | 25 | 1 | 4 |
subtype2 | 11 | 0 | 4 |
subtype3 | 12 | 1 | 8 |
subtype4 | 17 | 0 | 5 |
subtype5 | 23 | 0 | 4 |
Figure S22. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 4.57e-07 (Chi-square test), Q value = 2.9e-05
Table S26. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 44 | 71 |
subtype1 | 20 | 10 |
subtype2 | 3 | 12 |
subtype3 | 3 | 18 |
subtype4 | 1 | 21 |
subtype5 | 17 | 10 |
Figure S23. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.345 (Chi-square test), Q value = 1
Table S27. Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 91 | 10 | 1 | 8 |
subtype1 | 24 | 2 | 0 | 4 |
subtype2 | 10 | 3 | 0 | 1 |
subtype3 | 16 | 2 | 1 | 0 |
subtype4 | 19 | 1 | 0 | 0 |
subtype5 | 22 | 2 | 0 | 3 |
Figure S24. Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Table S28. Description of clustering approach #4: 'RNAseq cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 43 | 51 | 21 |
P value = 0.535 (logrank test), Q value = 1
Table S29. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 112 | 51 | 0.0 - 113.0 (14.9) |
subtype1 | 41 | 17 | 0.0 - 102.7 (21.5) |
subtype2 | 50 | 26 | 0.1 - 113.0 (14.0) |
subtype3 | 21 | 8 | 0.4 - 93.7 (14.1) |
Figure S25. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0083 (ANOVA), Q value = 0.5
Table S30. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 113 | 61.5 (13.7) |
subtype1 | 41 | 66.1 (11.1) |
subtype2 | 51 | 57.4 (14.3) |
subtype3 | 21 | 62.6 (14.4) |
Figure S26. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.324 (Chi-square test), Q value = 1
Table S31. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 43 | 25 | 2 | 25 | 2 | 5 | 1 | 1 | 1 |
subtype1 | 22 | 7 | 1 | 7 | 0 | 1 | 0 | 1 | 0 |
subtype2 | 11 | 13 | 1 | 13 | 2 | 4 | 1 | 0 | 1 |
subtype3 | 10 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
Figure S27. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.0565 (Chi-square test), Q value = 1
Table S32. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 46 | 28 | 33 | 7 |
subtype1 | 24 | 7 | 9 | 3 |
subtype2 | 12 | 15 | 19 | 4 |
subtype3 | 10 | 6 | 5 | 0 |
Figure S28. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 1 (Fisher's exact test), Q value = 1
Table S33. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 73 | 3 |
subtype1 | 27 | 1 |
subtype2 | 33 | 2 |
subtype3 | 13 | 0 |
Figure S29. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.511 (Chi-square test), Q value = 1
Table S34. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 88 | 2 | 25 |
subtype1 | 32 | 0 | 11 |
subtype2 | 40 | 2 | 9 |
subtype3 | 16 | 0 | 5 |
Figure S30. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 3.17e-05 (Fisher's exact test), Q value = 0.002
Table S35. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 44 | 71 |
subtype1 | 18 | 25 |
subtype2 | 26 | 25 |
subtype3 | 0 | 21 |
Figure S31. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.731 (Chi-square test), Q value = 1
Table S36. Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 91 | 10 | 1 | 8 |
subtype1 | 35 | 3 | 0 | 3 |
subtype2 | 39 | 5 | 1 | 5 |
subtype3 | 17 | 2 | 0 | 0 |
Figure S32. Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Table S37. Description of clustering approach #5: 'MIRSEQ CNMF'
Cluster Labels | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Number of samples | 12 | 10 | 28 | 25 | 39 |
P value = 0.0907 (logrank test), Q value = 1
Table S38. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 110 | 50 | 0.0 - 113.0 (15.7) |
subtype1 | 11 | 4 | 0.1 - 75.7 (29.2) |
subtype2 | 10 | 7 | 0.0 - 83.6 (3.4) |
subtype3 | 28 | 14 | 0.1 - 93.7 (18.3) |
subtype4 | 23 | 11 | 0.1 - 102.7 (21.5) |
subtype5 | 38 | 14 | 0.2 - 113.0 (15.7) |
Figure S33. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

P value = 0.021 (ANOVA), Q value = 1
Table S39. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 112 | 61.4 (14.0) |
subtype1 | 12 | 53.2 (17.0) |
subtype2 | 10 | 55.4 (16.7) |
subtype3 | 28 | 59.2 (12.7) |
subtype4 | 23 | 66.7 (11.1) |
subtype5 | 39 | 63.9 (13.3) |
Figure S34. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

P value = 0.224 (Chi-square test), Q value = 1
Table S40. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 42 | 24 | 2 | 25 | 3 | 5 | 1 | 1 | 1 |
subtype1 | 2 | 2 | 1 | 4 | 0 | 2 | 0 | 0 | 0 |
subtype2 | 3 | 2 | 0 | 4 | 0 | 1 | 0 | 0 | 0 |
subtype3 | 11 | 6 | 0 | 3 | 1 | 2 | 1 | 0 | 1 |
subtype4 | 11 | 2 | 1 | 4 | 2 | 0 | 0 | 1 | 0 |
subtype5 | 15 | 12 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |
Figure S35. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.71 (Chi-square test), Q value = 1
Table S41. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 45 | 27 | 34 | 7 |
subtype1 | 4 | 2 | 5 | 1 |
subtype2 | 3 | 2 | 4 | 1 |
subtype3 | 11 | 8 | 6 | 2 |
subtype4 | 12 | 2 | 9 | 2 |
subtype5 | 15 | 13 | 10 | 1 |
Figure S36. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.628 (Chi-square test), Q value = 1
Table S42. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 73 | 3 |
subtype1 | 9 | 1 |
subtype2 | 8 | 0 |
subtype3 | 19 | 1 |
subtype4 | 14 | 1 |
subtype5 | 23 | 0 |
Figure S37. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.13 (Chi-square test), Q value = 1
Table S43. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 89 | 2 | 23 |
subtype1 | 10 | 0 | 2 |
subtype2 | 7 | 0 | 3 |
subtype3 | 23 | 2 | 3 |
subtype4 | 16 | 0 | 9 |
subtype5 | 33 | 0 | 6 |
Figure S38. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.168 (Chi-square test), Q value = 1
Table S44. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 43 | 71 |
subtype1 | 7 | 5 |
subtype2 | 2 | 8 |
subtype3 | 14 | 14 |
subtype4 | 8 | 17 |
subtype5 | 12 | 27 |
Figure S39. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

P value = 0.666 (Chi-square test), Q value = 1
Table S45. Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 89 | 10 | 1 | 9 |
subtype1 | 9 | 1 | 0 | 2 |
subtype2 | 4 | 2 | 0 | 1 |
subtype3 | 24 | 1 | 1 | 2 |
subtype4 | 21 | 2 | 0 | 1 |
subtype5 | 31 | 4 | 0 | 3 |
Figure S40. Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Table S46. Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 9 | 59 | 46 |
P value = 0.0492 (logrank test), Q value = 1
Table S47. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 110 | 50 | 0.0 - 113.0 (15.7) |
subtype1 | 9 | 6 | 0.0 - 83.6 (3.3) |
subtype2 | 56 | 21 | 0.1 - 113.0 (14.5) |
subtype3 | 45 | 23 | 0.1 - 75.7 (21.7) |
Figure S41. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

P value = 0.00404 (ANOVA), Q value = 0.25
Table S48. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 112 | 61.4 (14.0) |
subtype1 | 9 | 57.7 (16.0) |
subtype2 | 57 | 65.6 (11.3) |
subtype3 | 46 | 56.9 (15.2) |
Figure S42. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

P value = 0.954 (Chi-square test), Q value = 1
Table S49. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 42 | 24 | 2 | 25 | 3 | 5 | 1 | 1 | 1 |
subtype1 | 3 | 2 | 0 | 3 | 0 | 1 | 0 | 0 | 0 |
subtype2 | 24 | 13 | 1 | 13 | 2 | 1 | 0 | 1 | 0 |
subtype3 | 15 | 9 | 1 | 9 | 1 | 3 | 1 | 0 | 1 |
Figure S43. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.992 (Chi-square test), Q value = 1
Table S50. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 45 | 27 | 34 | 7 |
subtype1 | 3 | 2 | 3 | 1 |
subtype2 | 25 | 14 | 17 | 3 |
subtype3 | 17 | 11 | 14 | 3 |
Figure S44. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.704 (Fisher's exact test), Q value = 1
Table S51. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 73 | 3 |
subtype1 | 7 | 0 |
subtype2 | 35 | 1 |
subtype3 | 31 | 2 |
Figure S45. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.396 (Chi-square test), Q value = 1
Table S52. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 89 | 2 | 23 |
subtype1 | 6 | 0 | 3 |
subtype2 | 47 | 0 | 12 |
subtype3 | 36 | 2 | 8 |
Figure S46. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.305 (Fisher's exact test), Q value = 1
Table S53. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 43 | 71 |
subtype1 | 2 | 7 |
subtype2 | 20 | 39 |
subtype3 | 21 | 25 |
Figure S47. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

P value = 0.396 (Chi-square test), Q value = 1
Table S54. Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 89 | 10 | 1 | 9 |
subtype1 | 4 | 2 | 0 | 0 |
subtype2 | 47 | 5 | 0 | 5 |
subtype3 | 38 | 3 | 1 | 4 |
Figure S48. Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Table S55. Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 26 | 53 | 35 |
P value = 0.427 (logrank test), Q value = 1
Table S56. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 110 | 50 | 0.0 - 113.0 (15.7) |
subtype1 | 25 | 10 | 0.0 - 102.7 (25.3) |
subtype2 | 51 | 26 | 0.3 - 113.0 (14.9) |
subtype3 | 34 | 14 | 0.1 - 93.7 (17.3) |
Figure S49. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.0429 (ANOVA), Q value = 1
Table S57. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 112 | 61.4 (14.0) |
subtype1 | 26 | 56.9 (15.5) |
subtype2 | 51 | 64.8 (12.7) |
subtype3 | 35 | 59.7 (13.7) |
Figure S50. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.0994 (Chi-square test), Q value = 1
Table S58. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 42 | 24 | 2 | 25 | 3 | 5 | 1 | 1 | 1 |
subtype1 | 8 | 3 | 2 | 6 | 1 | 3 | 1 | 0 | 0 |
subtype2 | 23 | 12 | 0 | 13 | 1 | 0 | 0 | 0 | 0 |
subtype3 | 11 | 9 | 0 | 6 | 1 | 2 | 0 | 1 | 1 |
Figure S51. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.474 (Chi-square test), Q value = 1
Table S59. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 45 | 27 | 34 | 7 |
subtype1 | 10 | 3 | 10 | 3 |
subtype2 | 23 | 13 | 15 | 2 |
subtype3 | 12 | 11 | 9 | 2 |
Figure S52. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.163 (Fisher's exact test), Q value = 1
Table S60. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 73 | 3 |
subtype1 | 18 | 1 |
subtype2 | 34 | 0 |
subtype3 | 21 | 2 |
Figure S53. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.544 (Chi-square test), Q value = 1
Table S61. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 89 | 2 | 23 |
subtype1 | 20 | 1 | 5 |
subtype2 | 40 | 0 | 13 |
subtype3 | 29 | 1 | 5 |
Figure S54. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.137 (Fisher's exact test), Q value = 1
Table S62. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 43 | 71 |
subtype1 | 11 | 15 |
subtype2 | 15 | 38 |
subtype3 | 17 | 18 |
Figure S55. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.517 (Chi-square test), Q value = 1
Table S63. Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 89 | 10 | 1 | 9 |
subtype1 | 19 | 2 | 1 | 2 |
subtype2 | 39 | 6 | 0 | 5 |
subtype3 | 31 | 2 | 0 | 2 |
Figure S56. Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

Table S64. Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'
Cluster Labels | 1 | 2 | 3 |
---|---|---|---|
Number of samples | 39 | 10 | 65 |
P value = 0.131 (logrank test), Q value = 1
Table S65. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'
nPatients | nDeath | Duration Range (Median), Month | |
---|---|---|---|
ALL | 110 | 50 | 0.0 - 113.0 (15.7) |
subtype1 | 38 | 16 | 0.1 - 75.7 (20.7) |
subtype2 | 10 | 7 | 0.0 - 83.6 (3.4) |
subtype3 | 62 | 27 | 0.2 - 113.0 (15.7) |
Figure S57. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

P value = 0.000702 (ANOVA), Q value = 0.044
Table S66. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'
nPatients | Mean (Std.Dev) | |
---|---|---|
ALL | 112 | 61.4 (14.0) |
subtype1 | 39 | 55.1 (15.0) |
subtype2 | 10 | 59.3 (15.9) |
subtype3 | 63 | 65.6 (11.5) |
Figure S58. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

P value = 0.825 (Chi-square test), Q value = 1
Table S67. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'
nPatients | STAGE I | STAGE II | STAGE III | STAGE IIIA | STAGE IIIB | STAGE IIIC | STAGE IV | STAGE IVA | STAGE IVB |
---|---|---|---|---|---|---|---|---|---|
ALL | 42 | 24 | 2 | 25 | 3 | 5 | 1 | 1 | 1 |
subtype1 | 12 | 7 | 1 | 8 | 1 | 3 | 1 | 0 | 1 |
subtype2 | 3 | 2 | 0 | 4 | 0 | 1 | 0 | 0 | 0 |
subtype3 | 27 | 15 | 1 | 13 | 2 | 1 | 0 | 1 | 0 |
Figure S59. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

P value = 0.943 (Chi-square test), Q value = 1
Table S68. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'
nPatients | T1 | T2 | T3 | T4 |
---|---|---|---|---|
ALL | 45 | 27 | 34 | 7 |
subtype1 | 14 | 9 | 12 | 3 |
subtype2 | 3 | 2 | 4 | 1 |
subtype3 | 28 | 16 | 18 | 3 |
Figure S60. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

P value = 0.694 (Fisher's exact test), Q value = 1
Table S69. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'
nPatients | 0 | 1 |
---|---|---|
ALL | 73 | 3 |
subtype1 | 27 | 2 |
subtype2 | 8 | 0 |
subtype3 | 38 | 1 |
Figure S61. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

P value = 0.295 (Chi-square test), Q value = 1
Table S70. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'
nPatients | M0 | M1 | MX |
---|---|---|---|
ALL | 89 | 2 | 23 |
subtype1 | 31 | 2 | 6 |
subtype2 | 7 | 0 | 3 |
subtype3 | 51 | 0 | 14 |
Figure S62. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

P value = 0.393 (Fisher's exact test), Q value = 1
Table S71. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'
nPatients | FEMALE | MALE |
---|---|---|
ALL | 43 | 71 |
subtype1 | 18 | 21 |
subtype2 | 3 | 7 |
subtype3 | 22 | 43 |
Figure S63. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

P value = 0.0511 (Chi-square test), Q value = 1
Table S72. Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'
nPatients | R0 | R1 | R2 | RX |
---|---|---|---|---|
ALL | 89 | 10 | 1 | 9 |
subtype1 | 33 | 2 | 1 | 3 |
subtype2 | 4 | 3 | 0 | 0 |
subtype3 | 52 | 5 | 0 | 6 |
Figure S64. Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'COMPLETENESS.OF.RESECTION'

-
Cluster data file = LIHC-TP.mergedcluster.txt
-
Clinical data file = LIHC-TP.clin.merged.picked.txt
-
Number of patients = 119
-
Number of clustering approaches = 8
-
Number of selected clinical features = 8
-
Exclude small clusters that include fewer than K patients, K = 3
consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)
Resampling-based clustering method (Monti et al. 2003)
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R
For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R
For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.