Correlation between aggregated molecular cancer subtypes and selected clinical features
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 12 clinical features across 242 patients, 6 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on RPPA data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time from Specimen Diagnosis to Death' and 'Time to Death'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time from Specimen Diagnosis to Death',  'Time to Death',  'PRIMARY.SITE.OF.DISEASE', and 'PATHOLOGY.T.STAGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 12 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 6 significant findings detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RPPA
CNMF
subtypes
RPPA
cHierClus
subtypes
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time from Specimen Diagnosis to Death logrank test 0.0237
(1.00)
0.00258
(0.291)
0.256
(1.00)
0.188
(1.00)
2.12e-05
(0.0025)
6.49e-08
(7.79e-06)
0.0256
(1.00)
0.117
(1.00)
0.0042
(0.461)
0.158
(1.00)
Time to Death logrank test 0.25
(1.00)
0.092
(1.00)
0.156
(1.00)
0.842
(1.00)
0.00212
(0.244)
6.92e-05
(0.00809)
0.0228
(1.00)
0.276
(1.00)
0.00506
(0.551)
0.206
(1.00)
AGE ANOVA 0.479
(1.00)
0.312
(1.00)
0.171
(1.00)
0.949
(1.00)
0.0125
(1.00)
0.00238
(0.272)
0.573
(1.00)
0.791
(1.00)
0.0964
(1.00)
0.396
(1.00)
PRIMARY SITE OF DISEASE Chi-square test 0.0881
(1.00)
0.00688
(0.743)
0.0639
(1.00)
0.494
(1.00)
0.00346
(0.387)
2.96e-07
(3.53e-05)
0.0314
(1.00)
0.672
(1.00)
0.0652
(1.00)
0.57
(1.00)
NEOPLASM DISEASESTAGE Chi-square test 0.123
(1.00)
0.275
(1.00)
0.718
(1.00)
0.0936
(1.00)
0.167
(1.00)
0.0608
(1.00)
0.676
(1.00)
0.344
(1.00)
0.653
(1.00)
0.695
(1.00)
PATHOLOGY T STAGE Chi-square test 0.714
(1.00)
0.131
(1.00)
0.484
(1.00)
0.744
(1.00)
0.0482
(1.00)
0.000177
(0.0205)
0.379
(1.00)
0.667
(1.00)
0.00397
(0.441)
0.4
(1.00)
PATHOLOGY N STAGE Chi-square test 0.881
(1.00)
0.0316
(1.00)
0.368
(1.00)
0.0986
(1.00)
0.388
(1.00)
0.457
(1.00)
0.608
(1.00)
0.89
(1.00)
0.296
(1.00)
0.993
(1.00)
PATHOLOGY M STAGE Chi-square test 0.43
(1.00)
0.862
(1.00)
0.214
(1.00)
0.942
(1.00)
0.8
(1.00)
0.0626
(1.00)
0.826
(1.00)
0.332
(1.00)
0.974
(1.00)
0.377
(1.00)
MELANOMA ULCERATION Fisher's exact test 0.743
(1.00)
0.193
(1.00)
0.743
(1.00)
0.683
(1.00)
0.596
(1.00)
0.288
(1.00)
0.285
(1.00)
0.75
(1.00)
0.476
(1.00)
0.711
(1.00)
MELANOMA PRIMARY KNOWN Fisher's exact test 0.663
(1.00)
0.23
(1.00)
0.441
(1.00)
0.0969
(1.00)
0.064
(1.00)
0.787
(1.00)
0.115
(1.00)
0.138
(1.00)
0.121
(1.00)
0.156
(1.00)
BRESLOW THICKNESS ANOVA 0.361
(1.00)
0.897
(1.00)
0.944
(1.00)
0.554
(1.00)
0.174
(1.00)
0.0909
(1.00)
0.932
(1.00)
0.746
(1.00)
0.908
(1.00)
0.612
(1.00)
GENDER Fisher's exact test 0.131
(1.00)
0.803
(1.00)
0.835
(1.00)
0.246
(1.00)
0.437
(1.00)
0.854
(1.00)
0.179
(1.00)
0.539
(1.00)
0.119
(1.00)
0.175
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 77 97 68
'Copy Number Ratio CNMF subtypes' versus 'Time from Specimen Diagnosis to Death'

P value = 0.0237 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 210 101 0.1 - 124.3 (13.7)
subtype1 66 33 0.2 - 114.2 (13.0)
subtype2 84 34 1.0 - 124.3 (17.1)
subtype3 60 34 0.1 - 111.8 (11.5)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.25 (logrank test), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 236 114 6.0 - 10870.0 (1484.5)
subtype1 76 38 6.0 - 8180.0 (1215.0)
subtype2 95 41 279.0 - 9567.0 (1543.0)
subtype3 65 35 28.0 - 10870.0 (1548.0)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.479 (ANOVA), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 238 55.5 (15.9)
subtype1 76 55.7 (16.4)
subtype2 96 56.7 (14.5)
subtype3 66 53.6 (17.4)

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.0881 (Chi-square test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 32 1 50 158
subtype1 17 0 15 45
subtype2 7 0 22 67
subtype3 8 1 13 46

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.123 (Chi-square test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 17 10 12 9 20 10 21 39 10
subtype1 0 1 4 4 8 7 2 3 5 3 4 12 9 5
subtype2 3 2 12 3 9 6 6 7 2 8 5 4 19 2
subtype3 6 1 4 3 5 4 2 2 2 9 1 5 11 3

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.714 (Chi-square test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 42 54 46 50
subtype1 15 17 16 14
subtype2 13 22 21 23
subtype3 14 15 9 13

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.881 (Chi-square test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 127 39 28 28
subtype1 38 13 11 7
subtype2 55 14 9 13
subtype3 34 12 8 8

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.43 (Chi-square test), Q value = 1

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 213 3 2 2 5
subtype1 64 1 0 1 4
subtype2 89 1 1 1 0
subtype3 60 1 1 0 1

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'MELANOMA.ULCERATION'

P value = 0.743 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 92 61
subtype1 32 21
subtype2 39 23
subtype3 21 17

Figure S9.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'Copy Number Ratio CNMF subtypes' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.663 (Fisher's exact test), Q value = 1

Table S11.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 212
subtype1 10 67
subtype2 10 87
subtype3 10 58

Figure S10.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'Copy Number Ratio CNMF subtypes' versus 'BRESLOW.THICKNESS'

P value = 0.361 (ANOVA), Q value = 1

Table S12.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 181 3.6 (5.2)
subtype1 61 3.1 (4.1)
subtype2 75 4.2 (6.7)
subtype3 45 3.0 (3.1)

Figure S11.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.131 (Fisher's exact test), Q value = 1

Table S13.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 95 147
subtype1 32 45
subtype2 31 66
subtype3 32 36

Figure S12.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'GENDER'

Clustering Approach #2: 'METHLYATION CNMF'

Table S14.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 60 88 94
'METHLYATION CNMF' versus 'Time from Specimen Diagnosis to Death'

P value = 0.00258 (logrank test), Q value = 0.29

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 210 101 0.1 - 124.3 (13.7)
subtype1 54 32 0.1 - 111.1 (10.7)
subtype2 75 35 0.2 - 114.2 (13.9)
subtype3 81 34 1.1 - 124.3 (18.6)

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'METHLYATION CNMF' versus 'Time to Death'

P value = 0.092 (logrank test), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 236 114 6.0 - 10870.0 (1484.5)
subtype1 59 35 6.0 - 7514.0 (1265.0)
subtype2 86 40 28.0 - 10870.0 (1606.0)
subtype3 91 39 98.0 - 10523.0 (1486.0)

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.312 (ANOVA), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 238 55.5 (15.9)
subtype1 59 54.8 (16.3)
subtype2 86 57.6 (16.4)
subtype3 93 54.1 (15.1)

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'AGE'

'METHLYATION CNMF' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.00688 (Chi-square test), Q value = 0.74

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 32 1 50 158
subtype1 14 1 13 32
subtype2 14 0 20 54
subtype3 4 0 17 72

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.275 (Chi-square test), Q value = 1

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 17 10 12 9 20 10 21 39 10
subtype1 1 2 4 1 6 8 2 4 4 5 2 5 9 2
subtype2 6 1 5 6 9 4 5 6 5 4 5 7 11 3
subtype3 2 1 11 3 7 5 3 2 0 11 3 9 19 5

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.131 (Chi-square test), Q value = 1

Table S20.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 42 54 46 50
subtype1 5 19 10 15
subtype2 15 17 16 20
subtype3 22 18 20 15

Figure S18.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.0316 (Chi-square test), Q value = 1

Table S21.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 127 39 28 28
subtype1 33 13 5 3
subtype2 52 7 13 9
subtype3 42 19 10 16

Figure S19.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.862 (Chi-square test), Q value = 1

Table S22.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 213 3 2 2 5
subtype1 52 1 1 0 0
subtype2 79 1 0 1 2
subtype3 82 1 1 1 3

Figure S20.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'MELANOMA.ULCERATION'

P value = 0.193 (Fisher's exact test), Q value = 1

Table S23.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 92 61
subtype1 15 17
subtype2 39 25
subtype3 38 19

Figure S21.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'METHLYATION CNMF' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.23 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 212
subtype1 6 54
subtype2 8 80
subtype3 16 78

Figure S22.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'METHLYATION CNMF' versus 'BRESLOW.THICKNESS'

P value = 0.897 (ANOVA), Q value = 1

Table S25.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 181 3.6 (5.2)
subtype1 47 3.7 (5.2)
subtype2 68 3.3 (2.8)
subtype3 66 3.7 (6.8)

Figure S23.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.803 (Fisher's exact test), Q value = 1

Table S26.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 95 147
subtype1 22 38
subtype2 37 51
subtype3 36 58

Figure S24.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'GENDER'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S27.  Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 45 50 25 37
'RPPA CNMF subtypes' versus 'Time from Specimen Diagnosis to Death'

P value = 0.256 (logrank test), Q value = 1

Table S28.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 131 71 0.2 - 124.3 (13.0)
subtype1 38 18 3.5 - 103.6 (12.4)
subtype2 40 22 0.2 - 114.2 (15.0)
subtype3 21 12 2.4 - 68.1 (8.7)
subtype4 32 19 1.1 - 124.3 (16.2)

Figure S25.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.156 (logrank test), Q value = 1

Table S29.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 152 79 6.0 - 10870.0 (1487.0)
subtype1 43 20 301.0 - 10523.0 (1664.0)
subtype2 50 26 6.0 - 10870.0 (1645.5)
subtype3 24 13 111.0 - 4930.0 (1403.5)
subtype4 35 20 78.0 - 5370.0 (1096.0)

Figure S26.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

'RPPA CNMF subtypes' versus 'AGE'

P value = 0.171 (ANOVA), Q value = 1

Table S30.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 154 55.1 (16.0)
subtype1 44 50.8 (13.3)
subtype2 50 56.1 (16.0)
subtype3 25 56.0 (16.9)
subtype4 35 58.5 (17.8)

Figure S27.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'AGE'

'RPPA CNMF subtypes' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.0639 (Chi-square test), Q value = 1

Table S31.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 18 1 27 110
subtype1 2 0 14 29
subtype2 9 1 5 35
subtype3 4 0 5 16
subtype4 3 0 3 30

Figure S28.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'RPPA CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.718 (Chi-square test), Q value = 1

Table S32.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 7 2 12 8 14 8 5 5 3 14 5 15 25 7
subtype1 2 1 5 1 6 2 2 1 0 3 3 6 9 1
subtype2 2 1 5 1 5 2 2 2 3 5 1 1 6 4
subtype3 1 0 1 2 1 1 0 1 0 4 1 4 4 0
subtype4 2 0 1 4 2 3 1 1 0 2 0 4 6 2

Figure S29.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.484 (Chi-square test), Q value = 1

Table S33.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 28 33 28 30
subtype1 7 11 12 9
subtype2 6 10 6 12
subtype3 5 7 5 3
subtype4 10 5 5 6

Figure S30.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.368 (Chi-square test), Q value = 1

Table S34.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 76 23 21 19
subtype1 21 8 5 8
subtype2 28 5 4 6
subtype3 9 5 7 2
subtype4 18 5 5 3

Figure S31.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.214 (Chi-square test), Q value = 1

Table S35.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 133 3 2 2 2
subtype1 41 1 1 0 0
subtype2 38 2 1 2 0
subtype3 24 0 0 0 0
subtype4 30 0 0 0 2

Figure S32.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'RPPA CNMF subtypes' versus 'MELANOMA.ULCERATION'

P value = 0.743 (Fisher's exact test), Q value = 1

Table S36.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 61 35
subtype1 19 8
subtype2 21 13
subtype3 10 5
subtype4 11 9

Figure S33.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'RPPA CNMF subtypes' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.441 (Fisher's exact test), Q value = 1

Table S37.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 23 134
subtype1 5 40
subtype2 8 42
subtype3 2 23
subtype4 8 29

Figure S34.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'RPPA CNMF subtypes' versus 'BRESLOW.THICKNESS'

P value = 0.944 (ANOVA), Q value = 1

Table S38.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 111 3.5 (5.4)
subtype1 35 3.7 (8.3)
subtype2 34 3.5 (3.1)
subtype3 20 2.8 (3.9)
subtype4 22 3.6 (3.7)

Figure S35.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.835 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 62 95
subtype1 17 28
subtype2 19 31
subtype3 9 16
subtype4 17 20

Figure S36.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'GENDER'

Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S40.  Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 62 53 42
'RPPA cHierClus subtypes' versus 'Time from Specimen Diagnosis to Death'

P value = 0.188 (logrank test), Q value = 1

Table S41.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 131 71 0.2 - 124.3 (13.0)
subtype1 49 28 0.2 - 103.6 (11.7)
subtype2 46 24 3.5 - 124.3 (15.5)
subtype3 36 19 1.4 - 84.7 (16.3)

Figure S37.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.842 (logrank test), Q value = 1

Table S42.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 152 79 6.0 - 10870.0 (1487.0)
subtype1 61 31 6.0 - 7562.0 (1349.0)
subtype2 52 27 195.0 - 10870.0 (1622.5)
subtype3 39 21 301.0 - 10523.0 (1620.0)

Figure S38.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'Time to Death'

'RPPA cHierClus subtypes' versus 'AGE'

P value = 0.949 (ANOVA), Q value = 1

Table S43.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 154 55.1 (16.0)
subtype1 62 55.6 (16.9)
subtype2 52 54.7 (15.5)
subtype3 40 55.0 (15.5)

Figure S39.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'AGE'

'RPPA cHierClus subtypes' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.494 (Chi-square test), Q value = 1

Table S44.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 18 1 27 110
subtype1 7 0 11 43
subtype2 8 1 6 38
subtype3 3 0 10 29

Figure S40.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'RPPA cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0936 (Chi-square test), Q value = 1

Table S45.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 7 2 12 8 14 8 5 5 3 14 5 15 25 7
subtype1 1 0 4 5 6 7 0 2 0 6 2 7 7 3
subtype2 3 1 6 2 4 0 4 3 3 4 1 2 7 2
subtype3 3 1 2 1 4 1 1 0 0 4 2 6 11 2

Figure S41.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.744 (Chi-square test), Q value = 1

Table S46.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 28 33 28 30
subtype1 12 14 12 12
subtype2 9 9 5 11
subtype3 7 10 11 7

Figure S42.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0986 (Chi-square test), Q value = 1

Table S47.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 76 23 21 19
subtype1 31 10 10 4
subtype2 29 3 5 7
subtype3 16 10 6 8

Figure S43.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.942 (Chi-square test), Q value = 1

Table S48.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 133 3 2 2 2
subtype1 54 1 1 1 1
subtype2 41 1 0 1 0
subtype3 38 1 1 0 1

Figure S44.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'RPPA cHierClus subtypes' versus 'MELANOMA.ULCERATION'

P value = 0.683 (Fisher's exact test), Q value = 1

Table S49.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 61 35
subtype1 29 14
subtype2 19 11
subtype3 13 10

Figure S45.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'RPPA cHierClus subtypes' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.0969 (Fisher's exact test), Q value = 1

Table S50.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 23 134
subtype1 5 57
subtype2 12 41
subtype3 6 36

Figure S46.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'RPPA cHierClus subtypes' versus 'BRESLOW.THICKNESS'

P value = 0.554 (ANOVA), Q value = 1

Table S51.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 111 3.5 (5.4)
subtype1 48 3.0 (3.4)
subtype2 33 3.3 (3.1)
subtype3 30 4.4 (9.0)

Figure S47.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.246 (Fisher's exact test), Q value = 1

Table S52.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 62 95
subtype1 27 35
subtype2 23 30
subtype3 12 30

Figure S48.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'GENDER'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S53.  Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 85 63 93
'RNAseq CNMF subtypes' versus 'Time from Specimen Diagnosis to Death'

P value = 2.12e-05 (logrank test), Q value = 0.0025

Table S54.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 209 101 0.1 - 124.3 (13.7)
subtype1 71 39 1.7 - 111.8 (15.3)
subtype2 56 16 1.1 - 124.3 (24.6)
subtype3 82 46 0.1 - 99.5 (10.1)

Figure S49.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.00212 (logrank test), Q value = 0.24

Table S55.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 235 114 6.0 - 10870.0 (1486.0)
subtype1 82 46 194.0 - 10870.0 (1737.0)
subtype2 62 19 220.0 - 8180.0 (1686.5)
subtype3 91 49 6.0 - 7514.0 (1265.0)

Figure S50.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.0125 (ANOVA), Q value = 1

Table S56.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 237 55.5 (15.9)
subtype1 82 51.6 (15.9)
subtype2 63 56.1 (15.5)
subtype3 92 58.7 (15.7)

Figure S51.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'AGE'

'RNAseq CNMF subtypes' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.00346 (Chi-square test), Q value = 0.39

Table S57.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 32 1 49 158
subtype1 10 0 27 48
subtype2 4 0 7 52
subtype3 18 1 15 58

Figure S52.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.167 (Chi-square test), Q value = 1

Table S58.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 17 10 12 9 20 10 20 39 10
subtype1 4 3 9 2 8 7 3 3 1 11 4 5 10 5
subtype2 2 1 7 4 4 5 4 1 2 6 0 4 14 2
subtype3 3 0 4 4 10 5 3 8 6 3 6 11 15 3

Figure S53.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0482 (Chi-square test), Q value = 1

Table S59.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 42 54 46 49
subtype1 17 25 14 11
subtype2 15 11 12 12
subtype3 10 18 20 26

Figure S54.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.388 (Chi-square test), Q value = 1

Table S60.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 127 39 27 28
subtype1 44 16 9 8
subtype2 37 10 3 9
subtype3 46 13 15 11

Figure S55.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.8 (Chi-square test), Q value = 1

Table S61.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 212 3 2 2 5
subtype1 74 0 1 1 3
subtype2 57 1 0 0 1
subtype3 81 2 1 1 1

Figure S56.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'MELANOMA.ULCERATION'

P value = 0.596 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 91 61
subtype1 27 17
subtype2 25 13
subtype3 39 31

Figure S57.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'RNAseq CNMF subtypes' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.064 (Fisher's exact test), Q value = 1

Table S63.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 211
subtype1 13 72
subtype2 11 52
subtype3 6 87

Figure S58.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'RNAseq CNMF subtypes' versus 'BRESLOW.THICKNESS'

P value = 0.174 (ANOVA), Q value = 1

Table S64.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 180 3.6 (5.2)
subtype1 60 3.0 (6.6)
subtype2 45 2.9 (3.6)
subtype3 75 4.4 (4.6)

Figure S59.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.437 (Fisher's exact test), Q value = 1

Table S65.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 95 146
subtype1 38 47
subtype2 22 41
subtype3 35 58

Figure S60.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'GENDER'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S66.  Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 52 123 66
'RNAseq cHierClus subtypes' versus 'Time from Specimen Diagnosis to Death'

P value = 6.49e-08 (logrank test), Q value = 7.8e-06

Table S67.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 209 101 0.1 - 124.3 (13.7)
subtype1 48 33 0.1 - 95.4 (8.7)
subtype2 104 36 0.2 - 124.3 (21.2)
subtype3 57 32 1.7 - 111.1 (15.2)

Figure S61.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 6.92e-05 (logrank test), Q value = 0.0081

Table S68.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 235 114 6.0 - 10870.0 (1486.0)
subtype1 51 33 6.0 - 7514.0 (874.0)
subtype2 120 43 28.0 - 10523.0 (1547.5)
subtype3 64 38 236.0 - 10870.0 (1737.0)

Figure S62.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.00238 (ANOVA), Q value = 0.27

Table S69.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 237 55.5 (15.9)
subtype1 51 62.0 (16.1)
subtype2 122 54.6 (15.9)
subtype3 64 52.1 (14.6)

Figure S63.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'AGE'

'RNAseq cHierClus subtypes' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 2.96e-07 (Chi-square test), Q value = 3.5e-05

Table S70.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 32 1 49 158
subtype1 15 0 10 26
subtype2 9 1 13 100
subtype3 8 0 26 32

Figure S64.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0608 (Chi-square test), Q value = 1

Table S71.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 17 10 12 9 20 10 20 39 10
subtype1 1 0 2 1 3 5 2 6 4 0 3 7 10 3
subtype2 5 1 12 9 11 7 5 3 3 13 2 9 22 4
subtype3 3 3 6 0 8 5 3 3 2 7 5 4 7 3

Figure S65.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.000177 (Chi-square test), Q value = 0.02

Table S72.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 42 54 46 49
subtype1 2 9 14 18
subtype2 33 24 18 21
subtype3 7 21 14 10

Figure S66.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.457 (Chi-square test), Q value = 1

Table S73.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 127 39 27 28
subtype1 25 6 9 6
subtype2 67 19 12 17
subtype3 35 14 6 5

Figure S67.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.0626 (Chi-square test), Q value = 1

Table S74.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 212 3 2 2 5
subtype1 44 3 0 0 0
subtype2 111 0 1 1 4
subtype3 57 0 1 1 1

Figure S68.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'MELANOMA.ULCERATION'

P value = 0.288 (Fisher's exact test), Q value = 1

Table S75.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 91 61
subtype1 21 17
subtype2 52 27
subtype3 18 17

Figure S69.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'RNAseq cHierClus subtypes' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.787 (Fisher's exact test), Q value = 1

Table S76.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 211
subtype1 5 47
subtype2 17 106
subtype3 8 58

Figure S70.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'RNAseq cHierClus subtypes' versus 'BRESLOW.THICKNESS'

P value = 0.0909 (ANOVA), Q value = 1

Table S77.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 180 3.6 (5.2)
subtype1 43 5.0 (5.0)
subtype2 87 2.9 (3.5)
subtype3 50 3.5 (7.2)

Figure S71.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.854 (Fisher's exact test), Q value = 1

Table S78.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 95 146
subtype1 20 32
subtype2 47 76
subtype3 28 38

Figure S72.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'GENDER'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S79.  Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 57 97 82
'MIRSEQ CNMF' versus 'Time from Specimen Diagnosis to Death'

P value = 0.0256 (logrank test), Q value = 1

Table S80.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 204 100 0.1 - 124.3 (13.9)
subtype1 48 15 0.1 - 114.2 (16.0)
subtype2 84 49 0.8 - 124.3 (12.4)
subtype3 72 36 1.0 - 111.1 (15.2)

Figure S73.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0228 (logrank test), Q value = 1

Table S81.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 230 113 6.0 - 10870.0 (1466.5)
subtype1 55 18 6.0 - 10870.0 (1204.0)
subtype2 97 55 78.0 - 7514.0 (1371.0)
subtype3 78 40 236.0 - 9567.0 (1704.5)

Figure S74.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.573 (ANOVA), Q value = 1

Table S82.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 232 55.6 (15.7)
subtype1 56 56.2 (15.1)
subtype2 97 56.5 (16.7)
subtype3 79 54.1 (14.9)

Figure S75.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'AGE'

'MIRSEQ CNMF' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.0314 (Chi-square test), Q value = 1

Table S83.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 30 1 49 155
subtype1 5 1 10 41
subtype2 14 0 13 69
subtype3 11 0 26 45

Figure S76.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.676 (Chi-square test), Q value = 1

Table S84.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 15 9 12 8 19 10 21 38 10
subtype1 4 1 3 2 2 4 2 0 2 3 2 6 11 4
subtype2 3 1 6 6 10 8 4 7 3 7 3 10 13 4
subtype3 2 2 11 2 10 3 3 5 3 9 5 5 14 2

Figure S77.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.379 (Chi-square test), Q value = 1

Table S85.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 41 54 44 47
subtype1 12 6 9 11
subtype2 16 23 21 19
subtype3 13 25 14 17

Figure S78.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.608 (Chi-square test), Q value = 1

Table S86.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 123 38 28 27
subtype1 23 9 6 10
subtype2 54 15 11 9
subtype3 46 14 11 8

Figure S79.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.826 (Chi-square test), Q value = 1

Table S87.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 207 3 2 2 5
subtype1 44 1 1 1 2
subtype2 86 1 1 1 2
subtype3 77 1 0 0 1

Figure S80.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'MELANOMA.ULCERATION'

P value = 0.285 (Fisher's exact test), Q value = 1

Table S88.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 90 59
subtype1 14 15
subtype2 45 24
subtype3 31 20

Figure S81.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'MIRSEQ CNMF' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.115 (Fisher's exact test), Q value = 1

Table S89.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 206
subtype1 12 45
subtype2 10 87
subtype3 8 74

Figure S82.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'MIRSEQ CNMF' versus 'BRESLOW.THICKNESS'

P value = 0.932 (ANOVA), Q value = 1

Table S90.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 175 3.5 (5.2)
subtype1 34 3.4 (3.2)
subtype2 76 3.4 (4.1)
subtype3 65 3.7 (7.0)

Figure S83.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.179 (Fisher's exact test), Q value = 1

Table S91.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 91 145
subtype1 27 30
subtype2 38 59
subtype3 26 56

Figure S84.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'GENDER'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S92.  Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 28 75 133
'MIRSEQ CHIERARCHICAL' versus 'Time from Specimen Diagnosis to Death'

P value = 0.117 (logrank test), Q value = 1

Table S93.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 204 100 0.1 - 124.3 (13.9)
subtype1 24 7 0.2 - 114.2 (20.4)
subtype2 65 34 1.0 - 111.1 (15.5)
subtype3 115 59 0.1 - 124.3 (12.9)

Figure S85.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.276 (logrank test), Q value = 1

Table S94.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 230 113 6.0 - 10870.0 (1466.5)
subtype1 27 9 6.0 - 10870.0 (1044.0)
subtype2 71 37 220.0 - 10523.0 (1709.0)
subtype3 132 67 28.0 - 9567.0 (1443.5)

Figure S86.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.791 (ANOVA), Q value = 1

Table S95.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 232 55.6 (15.7)
subtype1 28 55.4 (16.8)
subtype2 72 54.6 (13.4)
subtype3 132 56.2 (16.7)

Figure S87.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.672 (Chi-square test), Q value = 1

Table S96.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 30 1 49 155
subtype1 3 0 8 17
subtype2 9 0 19 47
subtype3 18 1 22 91

Figure S88.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.344 (Chi-square test), Q value = 1

Table S97.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 15 9 12 8 19 10 21 38 10
subtype1 1 0 1 1 1 3 2 0 1 1 1 6 4 2
subtype2 3 3 9 1 7 3 2 4 2 11 3 3 14 2
subtype3 5 1 10 8 14 9 5 8 5 7 6 12 20 6

Figure S89.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.667 (Chi-square test), Q value = 1

Table S98.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 41 54 44 47
subtype1 5 3 6 7
subtype2 14 18 10 14
subtype3 22 33 28 26

Figure S90.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.89 (Chi-square test), Q value = 1

Table S99.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 123 38 28 27
subtype1 12 6 4 3
subtype2 37 12 10 10
subtype3 74 20 14 14

Figure S91.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 0.332 (Chi-square test), Q value = 1

Table S100.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 207 3 2 2 5
subtype1 23 1 1 1 0
subtype2 68 1 0 0 1
subtype3 116 1 1 1 4

Figure S92.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'MELANOMA.ULCERATION'

P value = 0.75 (Fisher's exact test), Q value = 1

Table S101.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 90 59
subtype1 9 8
subtype2 23 16
subtype3 58 35

Figure S93.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'MIRSEQ CHIERARCHICAL' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.138 (Fisher's exact test), Q value = 1

Table S102.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 206
subtype1 5 23
subtype2 13 62
subtype3 12 121

Figure S94.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'MIRSEQ CHIERARCHICAL' versus 'BRESLOW.THICKNESS'

P value = 0.746 (ANOVA), Q value = 1

Table S103.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 175 3.5 (5.2)
subtype1 18 3.4 (3.2)
subtype2 51 4.0 (7.9)
subtype3 106 3.3 (3.7)

Figure S95.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.539 (Fisher's exact test), Q value = 1

Table S104.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 91 145
subtype1 11 17
subtype2 25 50
subtype3 55 78

Figure S96.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'GENDER'

Clustering Approach #9: 'MIRseq Mature CNMF subtypes'

Table S105.  Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 78 96 62
'MIRseq Mature CNMF subtypes' versus 'Time from Specimen Diagnosis to Death'

P value = 0.0042 (logrank test), Q value = 0.46

Table S106.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 204 100 0.1 - 124.3 (13.9)
subtype1 67 23 0.1 - 114.2 (16.0)
subtype2 84 51 0.8 - 124.3 (11.1)
subtype3 53 26 1.0 - 111.1 (18.0)

Figure S97.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.00506 (logrank test), Q value = 0.55

Table S107.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 230 113 6.0 - 10870.0 (1466.5)
subtype1 75 26 6.0 - 10870.0 (1446.0)
subtype2 96 56 78.0 - 7562.0 (1290.0)
subtype3 59 31 236.0 - 9567.0 (1861.0)

Figure S98.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.0964 (ANOVA), Q value = 1

Table S108.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 232 55.6 (15.7)
subtype1 76 56.6 (14.6)
subtype2 96 57.2 (17.2)
subtype3 60 51.9 (14.3)

Figure S99.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.0652 (Chi-square test), Q value = 1

Table S109.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 30 1 49 155
subtype1 9 1 15 53
subtype2 13 0 13 69
subtype3 8 0 21 33

Figure S100.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.653 (Chi-square test), Q value = 1

Table S110.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 15 9 12 8 19 10 21 38 10
subtype1 5 2 7 5 3 5 2 1 3 5 2 8 15 3
subtype2 2 1 5 4 10 8 4 7 4 7 3 9 14 4
subtype3 2 1 8 1 9 2 3 4 1 7 5 4 9 3

Figure S101.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.00397 (Chi-square test), Q value = 0.44

Table S111.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 41 54 44 47
subtype1 21 10 10 16
subtype2 14 20 21 21
subtype3 6 24 13 10

Figure S102.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.296 (Chi-square test), Q value = 1

Table S112.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 123 38 28 27
subtype1 35 10 8 14
subtype2 53 15 11 9
subtype3 35 13 9 4

Figure S103.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.974 (Chi-square test), Q value = 1

Table S113.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 207 3 2 2 5
subtype1 64 1 1 1 1
subtype2 85 1 1 1 2
subtype3 58 1 0 0 2

Figure S104.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'MELANOMA.ULCERATION'

P value = 0.476 (Fisher's exact test), Q value = 1

Table S114.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 90 59
subtype1 23 20
subtype2 41 26
subtype3 26 13

Figure S105.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'MIRseq Mature CNMF subtypes' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.121 (Fisher's exact test), Q value = 1

Table S115.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 206
subtype1 15 63
subtype2 10 86
subtype3 5 57

Figure S106.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'MIRseq Mature CNMF subtypes' versus 'BRESLOW.THICKNESS'

P value = 0.908 (ANOVA), Q value = 1

Table S116.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 175 3.5 (5.2)
subtype1 51 3.4 (4.3)
subtype2 74 3.7 (4.1)
subtype3 50 3.4 (7.2)

Figure S107.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.119 (Fisher's exact test), Q value = 1

Table S117.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 91 145
subtype1 36 42
subtype2 37 59
subtype3 18 44

Figure S108.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'GENDER'

Clustering Approach #10: 'MIRseq Mature cHierClus subtypes'

Table S118.  Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 70 136 30
'MIRseq Mature cHierClus subtypes' versus 'Time from Specimen Diagnosis to Death'

P value = 0.158 (logrank test), Q value = 1

Table S119.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

nPatients nDeath Duration Range (Median), Month
ALL 204 100 0.1 - 124.3 (13.9)
subtype1 61 31 1.0 - 111.1 (18.6)
subtype2 117 61 0.1 - 124.3 (12.6)
subtype3 26 8 0.2 - 114.2 (16.0)

Figure S109.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time from Specimen Diagnosis to Death'

'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.206 (logrank test), Q value = 1

Table S120.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 230 113 6.0 - 10870.0 (1466.5)
subtype1 67 34 236.0 - 10523.0 (1861.0)
subtype2 133 69 28.0 - 9567.0 (1438.0)
subtype3 30 10 6.0 - 10870.0 (1090.0)

Figure S110.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.396 (ANOVA), Q value = 1

Table S121.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'AGE'

nPatients Mean (Std.Dev)
ALL 232 55.6 (15.7)
subtype1 67 53.7 (13.6)
subtype2 135 56.0 (16.5)
subtype3 30 58.2 (16.5)

Figure S111.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'PRIMARY.SITE.OF.DISEASE'

P value = 0.57 (Chi-square test), Q value = 1

Table S122.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

nPatients DISTANT METASTASIS PRIMARY TUMOR REGIONAL CUTANEOUS OR SUBCUTANEOUS TISSUE REGIONAL LYMPH NODE
ALL 30 1 49 155
subtype1 9 0 19 42
subtype2 18 1 22 94
subtype3 3 0 8 19

Figure S112.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PRIMARY.SITE.OF.DISEASE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.695 (Chi-square test), Q value = 1

Table S123.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

nPatients I OR II NOS STAGE 0 STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE IIC STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 9 4 20 10 22 15 9 12 8 19 10 21 38 10
subtype1 3 3 9 1 6 3 2 3 2 10 3 3 13 2
subtype2 5 1 9 8 15 9 5 8 5 8 5 14 21 6
subtype3 1 0 2 1 1 3 2 1 1 1 2 4 4 2

Figure S113.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.4 (Chi-square test), Q value = 1

Table S124.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

nPatients T0+T1 T2 T3 T4
ALL 41 54 44 47
subtype1 12 18 9 14
subtype2 23 34 28 26
subtype3 6 2 7 7

Figure S114.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.993 (Chi-square test), Q value = 1

Table S125.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2 N3
ALL 123 38 28 27
subtype1 35 12 9 9
subtype2 74 21 15 15
subtype3 14 5 4 3

Figure S115.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.377 (Chi-square test), Q value = 1

Table S126.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 M1A M1B M1C
ALL 207 3 2 2 5
subtype1 64 1 0 0 1
subtype2 119 1 1 1 4
subtype3 24 1 1 1 0

Figure S116.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'MELANOMA.ULCERATION'

P value = 0.711 (Fisher's exact test), Q value = 1

Table S127.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

nPatients NO YES
ALL 90 59
subtype1 22 15
subtype2 58 35
subtype3 10 9

Figure S117.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'MELANOMA.ULCERATION'

'MIRseq Mature cHierClus subtypes' versus 'MELANOMA.PRIMARY.KNOWN'

P value = 0.156 (Fisher's exact test), Q value = 1

Table S128.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

nPatients NO YES
ALL 30 206
subtype1 11 59
subtype2 13 123
subtype3 6 24

Figure S118.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'MELANOMA.PRIMARY.KNOWN'

'MIRseq Mature cHierClus subtypes' versus 'BRESLOW.THICKNESS'

P value = 0.612 (ANOVA), Q value = 1

Table S129.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

nPatients Mean (Std.Dev)
ALL 175 3.5 (5.2)
subtype1 48 4.2 (8.1)
subtype2 107 3.3 (3.7)
subtype3 20 3.3 (3.1)

Figure S119.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'BRESLOW.THICKNESS'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.175 (Fisher's exact test), Q value = 1

Table S130.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'GENDER'

nPatients FEMALE MALE
ALL 91 145
subtype1 21 49
subtype2 56 80
subtype3 14 16

Figure S120.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'GENDER'

Methods & Data
Input
  • Cluster data file = SKCM-TM.mergedcluster.txt

  • Clinical data file = SKCM-TM.clin.merged.picked.txt

  • Number of patients = 242

  • Number of clustering approaches = 10

  • Number of selected clinical features = 12

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)