Correlation between gene mutation status and selected clinical features
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 7 genes and 15 clinical features across 385 patients, 8 significant findings detected with Q value < 0.25.

  • NRAS mutation correlated to 'PATHOLOGY.N.STAGE',  'HISTOLOGICAL.TYPE', and 'NUMBER.OF.LYMPH.NODES'.

  • BRAF mutation correlated to 'NEOPLASM.DISEASESTAGE',  'PATHOLOGY.T.STAGE',  'PATHOLOGY.N.STAGE',  'HISTOLOGICAL.TYPE', and 'EXTRATHYROIDAL.EXTENSION'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 7 genes and 15 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 8 significant findings detected.

Clinical
Features
Time
to
Death
AGE NEOPLASM
DISEASESTAGE
PATHOLOGY
T
STAGE
PATHOLOGY
N
STAGE
PATHOLOGY
M
STAGE
GENDER HISTOLOGICAL
TYPE
RADIATIONS
RADIATION
REGIMENINDICATION
RADIATIONEXPOSURE EXTRATHYROIDAL
EXTENSION
COMPLETENESS
OF
RESECTION
NUMBER
OF
LYMPH
NODES
MULTIFOCALITY TUMOR
SIZE
nMutated (%) nWild-Type logrank test t-test Chi-square test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test t-test Fisher's exact test t-test
BRAF 232 (60%) 153 0.806
(1.00)
0.848
(1.00)
0.00245
(0.236)
0.000849
(0.0832)
0.000905
(0.0877)
0.0672
(1.00)
0.552
(1.00)
5.43e-20
(5.59e-18)
0.0323
(1.00)
0.591
(1.00)
2.09e-07
(2.13e-05)
0.587
(1.00)
0.618
(1.00)
0.752
(1.00)
0.231
(1.00)
NRAS 32 (8%) 353 0.478
(1.00)
0.748
(1.00)
0.0436
(1.00)
0.0788
(1.00)
0.000413
(0.0409)
0.348
(1.00)
0.674
(1.00)
1.55e-05
(0.00156)
0.61
(1.00)
1
(1.00)
0.105
(1.00)
0.739
(1.00)
0.000113
(0.0113)
0.194
(1.00)
0.851
(1.00)
HRAS 13 (3%) 372 0.52
(1.00)
0.616
(1.00)
0.339
(1.00)
0.436
(1.00)
0.549
(1.00)
0.262
(1.00)
0.745
(1.00)
0.0147
(1.00)
1
(1.00)
1
(1.00)
0.681
(1.00)
0.137
(1.00)
0.51
(1.00)
0.779
(1.00)
0.933
(1.00)
OTUD4 5 (1%) 380 0.65
(1.00)
0.709
(1.00)
0.911
(1.00)
1
(1.00)
0.671
(1.00)
0.241
(1.00)
0.336
(1.00)
0.436
(1.00)
1
(1.00)
1
(1.00)
0.67
(1.00)
1
(1.00)
0.00629
(0.597)
0.667
(1.00)
EIF1AX 6 (2%) 379 0.0796
(1.00)
0.135
(1.00)
0.969
(1.00)
1
(1.00)
0.625
(1.00)
0.468
(1.00)
0.171
(1.00)
0.0922
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
0.255
(1.00)
0.771
(1.00)
0.667
(1.00)
0.672
(1.00)
NUP93 4 (1%) 381 0.907
(1.00)
0.391
(1.00)
0.794
(1.00)
0.731
(1.00)
0.349
(1.00)
0.653
(1.00)
1
(1.00)
0.0157
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
0.498
(1.00)
0.609
(1.00)
0.342
(1.00)
0.995
(1.00)
NLRP6 3 (1%) 382 0.655
(1.00)
0.0342
(1.00)
0.815
(1.00)
0.157
(1.00)
0.605
(1.00)
0.132
(1.00)
1
(1.00)
0.668
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
0.525
(1.00)
0.6
(1.00)
'NRAS MUTATION STATUS' versus 'PATHOLOGY.N.STAGE'

P value = 0.000413 (Fisher's exact test), Q value = 0.041

Table S1.  Gene #1: 'NRAS MUTATION STATUS' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 181 163
NRAS MUTATED 25 5
NRAS WILD-TYPE 156 158

Figure S1.  Get High-res Image Gene #1: 'NRAS MUTATION STATUS' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'NRAS MUTATION STATUS' versus 'HISTOLOGICAL.TYPE'

P value = 1.55e-05 (Fisher's exact test), Q value = 0.0016

Table S2.  Gene #1: 'NRAS MUTATION STATUS' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

nPatients OTHER SPECIFY THYROID PAPILLARY CARCINOMA - CLASSICAL/USUAL THYROID PAPILLARY CARCINOMA - FOLLICULAR (>= 99% FOLLICULAR PATTERNED) THYROID PAPILLARY CARCINOMA - TALL CELL (>= 50% TALL CELL FEATURES)
ALL 6 267 83 29
NRAS MUTATED 0 13 19 0
NRAS WILD-TYPE 6 254 64 29

Figure S2.  Get High-res Image Gene #1: 'NRAS MUTATION STATUS' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

'NRAS MUTATION STATUS' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.000113 (t-test), Q value = 0.011

Table S3.  Gene #1: 'NRAS MUTATION STATUS' versus Clinical Feature #13: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 302 3.3 (6.0)
NRAS MUTATED 25 1.0 (2.4)
NRAS WILD-TYPE 277 3.5 (6.2)

Figure S3.  Get High-res Image Gene #1: 'NRAS MUTATION STATUS' versus Clinical Feature #13: 'NUMBER.OF.LYMPH.NODES'

'BRAF MUTATION STATUS' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00245 (Chi-square test), Q value = 0.24

Table S4.  Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV STAGE IVA STAGE IVC
ALL 220 43 83 2 30 5
BRAF MUTATED 129 17 59 0 23 3
BRAF WILD-TYPE 91 26 24 2 7 2

Figure S4.  Get High-res Image Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'BRAF MUTATION STATUS' versus 'PATHOLOGY.T.STAGE'

P value = 0.000849 (Fisher's exact test), Q value = 0.083

Table S5.  Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 113 133 124 13
BRAF MUTATED 67 65 88 11
BRAF WILD-TYPE 46 68 36 2

Figure S5.  Get High-res Image Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'BRAF MUTATION STATUS' versus 'PATHOLOGY.N.STAGE'

P value = 0.000905 (Fisher's exact test), Q value = 0.088

Table S6.  Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 181 163
BRAF MUTATED 96 115
BRAF WILD-TYPE 85 48

Figure S6.  Get High-res Image Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'BRAF MUTATION STATUS' versus 'HISTOLOGICAL.TYPE'

P value = 5.43e-20 (Fisher's exact test), Q value = 5.6e-18

Table S7.  Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

nPatients OTHER SPECIFY THYROID PAPILLARY CARCINOMA - CLASSICAL/USUAL THYROID PAPILLARY CARCINOMA - FOLLICULAR (>= 99% FOLLICULAR PATTERNED) THYROID PAPILLARY CARCINOMA - TALL CELL (>= 50% TALL CELL FEATURES)
ALL 6 267 83 29
BRAF MUTATED 3 187 15 27
BRAF WILD-TYPE 3 80 68 2

Figure S7.  Get High-res Image Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #8: 'HISTOLOGICAL.TYPE'

'BRAF MUTATION STATUS' versus 'EXTRATHYROIDAL.EXTENSION'

P value = 2.09e-07 (Fisher's exact test), Q value = 2.1e-05

Table S8.  Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #11: 'EXTRATHYROIDAL.EXTENSION'

nPatients MINIMAL (T3) MODERATE/ADVANCED (T4A) NONE VERY ADVANCED (T4B)
ALL 99 10 264 1
BRAF MUTATED 78 10 139 0
BRAF WILD-TYPE 21 0 125 1

Figure S8.  Get High-res Image Gene #2: 'BRAF MUTATION STATUS' versus Clinical Feature #11: 'EXTRATHYROIDAL.EXTENSION'

Methods & Data
Input
  • Mutation data file = THCA-TP.mutsig.cluster.txt

  • Clinical data file = THCA-TP.clin.merged.picked.txt

  • Number of patients = 385

  • Number of significantly mutated genes = 7

  • Number of selected clinical features = 15

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[3] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)