Correlation between gene mutation status and molecular subtypes
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (Primary solid tumor)
23 September 2013  |  analyses__2013_09_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between gene mutation status and molecular subtypes. Broad Institute of MIT and Harvard. doi:10.7908/C10G3HF2
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and molecular subtypes.

Summary

Testing the association between mutation status of 6 genes and 8 molecular subtypes across 39 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

  • No gene mutations related to molecuar subtypes.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 6 genes and 8 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.

Clinical
Features
CN
CNMF
METHLYATION
CNMF
MRNASEQ
CNMF
MRNASEQ
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRSEQ
MATURE
CNMF
MIRSEQ
MATURE
CHIERARCHICAL
nMutated (%) nWild-Type Fisher's exact test Chi-square test Chi-square test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
PIK3CA 9 (23%) 30 0.0409
(1.00)
0.469
(1.00)
0.36
(1.00)
0.567
(1.00)
0.88
(1.00)
0.669
(1.00)
1
(1.00)
0.0855
(1.00)
TMCC1 4 (10%) 35 0.293
(1.00)
0.698
(1.00)
0.599
(1.00)
0.628
(1.00)
0.556
(1.00)
0.378
(1.00)
0.458
(1.00)
UGT3A2 3 (8%) 36 0.548
(1.00)
0.118
(1.00)
0.52
(1.00)
0.55
(1.00)
0.556
(1.00)
0.397
(1.00)
0.0312
(1.00)
CDC27 5 (13%) 34 0.435
(1.00)
0.514
(1.00)
0.545
(1.00)
0.174
(1.00)
0.456
(1.00)
0.302
(1.00)
0.578
(1.00)
0.0279
(1.00)
MAPK1 3 (8%) 36 0.0387
(1.00)
0.641
(1.00)
0.655
(1.00)
0.73
(1.00)
0.0885
(1.00)
0.556
(1.00)
0.397
(1.00)
0.783
(1.00)
UGT2B10 3 (8%) 36 0.408
(1.00)
0.655
(1.00)
0.52
(1.00)
1
(1.00)
1
(1.00)
0.397
(1.00)
0.146
(1.00)
Methods & Data
Input
  • Mutation data file = CESC-TP.mutsig.cluster.txt

  • Molecular subtypes file = CESC-TP.transferedmergedcluster.txt

  • Number of patients = 39

  • Number of significantly mutated genes = 6

  • Number of Molecular subtypes = 8

  • Exclude genes that fewer than K tumors have mutations, K = 3

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[2] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[3] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)