Correlation between aggregated molecular cancer subtypes and selected clinical features
Kidney Chromophobe (Primary solid tumor)
23 September 2013  |  analyses__2013_09_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1SX6BHN
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 10 clinical features across 64 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 2 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 5 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 10 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 0.329
(1.00)
0.534
(1.00)
0.179
(1.00)
0.0507
(1.00)
0.168
(1.00)
0.0756
(1.00)
0.249
(1.00)
0.693
(1.00)
AGE ANOVA 0.894
(1.00)
0.442
(1.00)
0.345
(1.00)
0.271
(1.00)
0.00506
(0.349)
0.159
(1.00)
0.403
(1.00)
0.052
(1.00)
NEOPLASM DISEASESTAGE Chi-square test 0.493
(1.00)
0.0681
(1.00)
0.217
(1.00)
0.278
(1.00)
0.18
(1.00)
0.254
(1.00)
0.163
(1.00)
0.61
(1.00)
PATHOLOGY T STAGE Chi-square test 0.489
(1.00)
0.0308
(1.00)
0.108
(1.00)
0.197
(1.00)
0.142
(1.00)
0.245
(1.00)
0.0974
(1.00)
0.455
(1.00)
PATHOLOGY N STAGE Fisher's exact test 0.565
(1.00)
0.383
(1.00)
0.113
(1.00)
0.105
(1.00)
0.722
(1.00)
0.387
(1.00)
0.56
(1.00)
1
(1.00)
PATHOLOGY M STAGE Chi-square test 0.786
(1.00)
0.22
(1.00)
0.188
(1.00)
0.0973
(1.00)
0.292
(1.00)
0.071
(1.00)
0.363
(1.00)
0.128
(1.00)
GENDER Fisher's exact test 0.535
(1.00)
0.838
(1.00)
0.487
(1.00)
0.654
(1.00)
0.654
(1.00)
0.463
(1.00)
0.194
(1.00)
0.242
(1.00)
KARNOFSKY PERFORMANCE SCORE ANOVA 0.0658
(1.00)
0.608
(1.00)
0.264
(1.00)
0.264
(1.00)
0.0288
(1.00)
0.148
(1.00)
0.0859
(1.00)
0.142
(1.00)
NUMBERPACKYEARSSMOKED ANOVA 0.088
(1.00)
0.105
(1.00)
0.105
(1.00)
0.497
(1.00)
0.497
(1.00)
YEAROFTOBACCOSMOKINGONSET ANOVA
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 5 45 14
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.329 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 5 1 32.7 - 92.7 (38.1)
subtype2 44 6 0.6 - 151.9 (63.8)
subtype3 14 0 2.5 - 137.1 (68.3)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.894 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 5 51.6 (11.7)
subtype2 45 51.7 (14.8)
subtype3 14 49.6 (14.5)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.493 (Chi-square test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 1 2 2 0
subtype2 13 16 10 6
subtype3 7 5 2 0

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.489 (Chi-square test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 1 2 2
subtype2 13 16 16
subtype3 7 5 2

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.565 (Fisher's exact test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 2 0
subtype2 30 5
subtype3 8 0

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.786 (Chi-square test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 3 0 1
subtype2 21 2 7
subtype3 8 0 1

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.535 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 3 2
subtype2 16 29
subtype3 6 8

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0658 (ANOVA), Q value = 1

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 1 90.0 (NA)
subtype2 7 85.7 (9.8)
subtype3 3 96.7 (5.8)

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #2: 'METHLYATION CNMF'

Table S10.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 17 34 13
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.534 (logrank test), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 17 1 23.5 - 137.1 (72.7)
subtype2 33 5 2.5 - 151.9 (65.2)
subtype3 13 1 0.6 - 98.3 (51.0)

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.442 (ANOVA), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 17 49.3 (14.0)
subtype2 34 50.4 (13.9)
subtype3 13 55.7 (16.3)

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0681 (Chi-square test), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 8 6 3 0
subtype2 6 16 8 4
subtype3 7 1 3 2

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.0308 (Chi-square test), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 8 6 3
subtype2 6 16 12
subtype3 7 1 5

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.383 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 12 0
subtype2 23 4
subtype3 5 1

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.22 (Chi-square test), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 11 0 2
subtype2 16 2 3
subtype3 5 0 4

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.838 (Fisher's exact test), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 7 10
subtype2 14 20
subtype3 4 9

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.608 (ANOVA), Q value = 1

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 3 93.3 (5.8)
subtype2 3 90.0 (10.0)
subtype3 5 86.0 (11.4)

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'METHLYATION CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.088 (ANOVA), Q value = 1

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 10 27.5 (21.5)
subtype1 3 12.0 (13.1)
subtype2 5 39.0 (24.4)
subtype3 2 22.0 (2.8)

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S20.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 19 20 15 10
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.179 (logrank test), Q value = 1

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 19 2 24.8 - 137.1 (76.9)
subtype2 19 0 2.5 - 151.9 (62.3)
subtype3 15 4 16.7 - 114.2 (66.5)
subtype4 10 1 0.6 - 98.3 (30.1)

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.345 (ANOVA), Q value = 1

Table S22.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 19 47.7 (12.9)
subtype2 20 50.8 (15.4)
subtype3 15 51.6 (14.3)
subtype4 10 58.0 (14.6)

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.217 (Chi-square test), Q value = 1

Table S23.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 7 6 5 1
subtype2 8 9 2 1
subtype3 1 7 5 2
subtype4 5 1 2 2

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.108 (Chi-square test), Q value = 1

Table S24.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 7 6 6
subtype2 8 9 3
subtype3 1 7 7
subtype4 5 1 4

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.113 (Fisher's exact test), Q value = 1

Table S25.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 12 1
subtype2 15 0
subtype3 10 3
subtype4 3 1

Figure S22.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.188 (Chi-square test), Q value = 1

Table S26.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 13 0 2
subtype2 9 1 2
subtype3 7 1 1
subtype4 3 0 4

Figure S23.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.487 (Fisher's exact test), Q value = 1

Table S27.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 9 10
subtype2 9 11
subtype3 5 10
subtype4 2 8

Figure S24.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.264 (ANOVA), Q value = 1

Table S28.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 3 93.3 (5.8)
subtype2 3 93.3 (11.5)
subtype3 1 90.0 (NA)
subtype4 4 82.5 (9.6)

Figure S25.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.105 (ANOVA), Q value = 1

Table S29.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 10 27.5 (21.5)
subtype1 3 14.3 (11.2)
subtype2 3 20.7 (16.3)
subtype3 3 50.0 (24.1)
subtype4 1 20.0 (NA)

Figure S26.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S30.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 10 10 16 6 22
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0507 (logrank test), Q value = 1

Table S31.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 10 4 16.7 - 114.2 (60.0)
subtype2 10 1 0.6 - 98.3 (26.1)
subtype3 15 0 3.5 - 151.9 (72.7)
subtype4 6 0 2.5 - 109.2 (52.3)
subtype5 22 2 24.8 - 137.1 (75.4)

Figure S27.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.271 (ANOVA), Q value = 1

Table S32.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 10 53.6 (12.7)
subtype2 10 55.1 (14.4)
subtype3 16 48.1 (14.1)
subtype4 6 60.3 (21.1)
subtype5 22 48.1 (12.8)

Figure S28.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.278 (Chi-square test), Q value = 1

Table S33.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 1 3 4 2
subtype2 5 2 1 2
subtype3 7 6 2 1
subtype4 0 4 2 0
subtype5 8 8 5 1

Figure S29.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.197 (Chi-square test), Q value = 1

Table S34.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 1 3 6
subtype2 5 2 3
subtype3 7 6 3
subtype4 0 4 2
subtype5 8 8 6

Figure S30.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.105 (Chi-square test), Q value = 1

Table S35.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 6 3
subtype2 3 1
subtype3 12 0
subtype4 4 0
subtype5 15 1

Figure S31.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.0973 (Chi-square test), Q value = 1

Table S36.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 4 1 1
subtype2 2 0 4
subtype3 7 1 2
subtype4 3 0 0
subtype5 16 0 2

Figure S32.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.654 (Chi-square test), Q value = 1

Table S37.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 4 6
subtype2 2 8
subtype3 8 8
subtype4 2 4
subtype5 9 13

Figure S33.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.264 (ANOVA), Q value = 1

Table S38.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 1 90.0 (NA)
subtype2 4 82.5 (9.6)
subtype3 3 93.3 (11.5)
subtype5 3 93.3 (5.8)

Figure S34.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.105 (ANOVA), Q value = 1

Table S39.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 10 27.5 (21.5)
subtype1 3 50.0 (24.1)
subtype2 1 20.0 (NA)
subtype3 3 20.7 (16.3)
subtype5 3 14.3 (11.2)

Figure S35.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S40.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 20 23 21
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.168 (logrank test), Q value = 1

Table S41.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 19 4 0.6 - 151.9 (51.0)
subtype2 23 2 3.5 - 137.1 (79.0)
subtype3 21 1 11.2 - 114.2 (63.9)

Figure S36.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.00506 (ANOVA), Q value = 0.35

Table S42.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 20 58.2 (15.9)
subtype2 23 51.6 (12.9)
subtype3 21 44.0 (11.1)

Figure S37.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.18 (Chi-square test), Q value = 1

Table S43.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 6 4 7 3
subtype2 9 8 3 3
subtype3 6 11 4 0

Figure S38.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.142 (Chi-square test), Q value = 1

Table S44.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 6 4 10
subtype2 9 8 6
subtype3 6 11 4

Figure S39.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.722 (Fisher's exact test), Q value = 1

Table S45.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 10 2
subtype2 14 2
subtype3 16 1

Figure S40.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.292 (Chi-square test), Q value = 1

Table S46.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 8 1 5
subtype2 14 1 1
subtype3 10 0 3

Figure S41.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.654 (Fisher's exact test), Q value = 1

Table S47.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 6 14
subtype2 10 13
subtype3 9 12

Figure S42.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0288 (ANOVA), Q value = 1

Table S48.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 5 82.0 (8.4)
subtype2 2 95.0 (7.1)
subtype3 4 95.0 (5.8)

Figure S43.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.497 (ANOVA), Q value = 1

Table S49.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 10 27.5 (21.5)
subtype1 3 31.7 (14.6)
subtype2 3 14.3 (11.2)
subtype3 4 34.2 (30.2)

Figure S44.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S50.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2
Number of samples 9 55
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.0756 (logrank test), Q value = 1

Table S51.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 9 2 0.6 - 75.7 (28.8)
subtype2 54 5 2.5 - 151.9 (70.3)

Figure S45.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.159 (t-test), Q value = 1

Table S52.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 9 58.4 (15.6)
subtype2 55 50.0 (14.0)

Figure S46.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.254 (Chi-square test), Q value = 1

Table S53.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 4 1 2 2
subtype2 17 22 12 4

Figure S47.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.245 (Chi-square test), Q value = 1

Table S54.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 4 1 4
subtype2 17 22 16

Figure S48.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.387 (Fisher's exact test), Q value = 1

Table S55.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 3 1
subtype2 37 4

Figure S49.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 0.071 (Chi-square test), Q value = 1

Table S56.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 2 0 3
subtype2 30 2 6

Figure S50.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.463 (Fisher's exact test), Q value = 1

Table S57.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 2 7
subtype2 23 32

Figure S51.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.148 (t-test), Q value = 1

Table S58.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 3 80.0 (10.0)
subtype2 8 92.5 (7.1)

Figure S52.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S59.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 10 15 15 10 14
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.249 (logrank test), Q value = 1

Table S60.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 10 2 3.5 - 97.0 (63.4)
subtype2 15 0 2.5 - 123.1 (51.0)
subtype3 15 2 24.8 - 137.1 (79.0)
subtype4 10 0 11.2 - 86.1 (67.2)
subtype5 13 3 0.6 - 151.9 (52.3)

Figure S53.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.403 (ANOVA), Q value = 1

Table S61.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 10 50.2 (10.7)
subtype2 15 51.1 (15.9)
subtype3 15 48.6 (16.1)
subtype4 10 47.3 (12.1)
subtype5 14 57.6 (14.3)

Figure S54.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.163 (Chi-square test), Q value = 1

Table S62.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 5 0 3 2
subtype2 6 7 2 0
subtype3 4 8 1 2
subtype4 2 5 3 0
subtype5 4 3 5 2

Figure S55.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0974 (Chi-square test), Q value = 1

Table S63.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 5 0 5
subtype2 6 7 2
subtype3 4 8 3
subtype4 2 5 3
subtype5 4 3 7

Figure S56.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.56 (Chi-square test), Q value = 1

Table S64.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 6 1
subtype2 9 0
subtype3 11 2
subtype4 6 0
subtype5 8 2

Figure S57.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.363 (Chi-square test), Q value = 1

Table S65.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 7 1 0
subtype2 4 0 3
subtype3 11 1 1
subtype4 5 0 2
subtype5 5 0 3

Figure S58.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.194 (Chi-square test), Q value = 1

Table S66.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 7 3
subtype2 6 9
subtype3 5 10
subtype4 4 6
subtype5 3 11

Figure S59.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0859 (ANOVA), Q value = 1

Table S67.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype2 3 86.7 (5.8)
subtype3 2 95.0 (7.1)
subtype4 3 96.7 (5.8)
subtype5 3 80.0 (10.0)

Figure S60.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S68.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 12 7 24 21
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.693 (logrank test), Q value = 1

Table S69.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 63 7 0.6 - 151.9 (63.9)
subtype1 12 2 0.6 - 98.3 (41.8)
subtype2 7 0 2.5 - 102.8 (25.9)
subtype3 23 2 11.2 - 151.9 (63.9)
subtype4 21 3 24.8 - 137.1 (76.9)

Figure S61.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.052 (ANOVA), Q value = 1

Table S70.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 51.2 (14.4)
subtype1 12 57.6 (16.5)
subtype2 7 60.4 (15.3)
subtype3 24 47.2 (13.7)
subtype4 21 49.0 (11.8)

Figure S62.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.61 (Chi-square test), Q value = 1

Table S71.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 23 14 6
subtype1 4 2 4 2
subtype2 2 4 0 1
subtype3 7 11 5 1
subtype4 8 6 5 2

Figure S63.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.455 (Chi-square test), Q value = 1

Table S72.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 23 20
subtype1 4 2 6
subtype2 2 4 1
subtype3 7 11 6
subtype4 8 6 7

Figure S64.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S73.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 6 1
subtype2 4 0
subtype3 17 2
subtype4 13 2

Figure S65.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.128 (Chi-square test), Q value = 1

Table S74.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 32 2 9
subtype1 5 0 3
subtype2 2 1 0
subtype3 10 1 4
subtype4 15 0 2

Figure S66.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.242 (Fisher's exact test), Q value = 1

Table S75.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 25 39
subtype1 2 10
subtype2 3 4
subtype3 9 15
subtype4 11 10

Figure S67.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.142 (ANOVA), Q value = 1

Table S76.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 3 80.0 (10.0)
subtype3 5 92.0 (8.4)
subtype4 3 93.3 (5.8)

Figure S68.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq Mature cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.497 (ANOVA), Q value = 1

Table S77.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 10 27.5 (21.5)
subtype1 3 31.7 (14.6)
subtype3 4 34.2 (30.2)
subtype4 3 14.3 (11.2)

Figure S69.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

Methods & Data
Input
  • Cluster data file = KICH-TP.mergedcluster.txt

  • Clinical data file = KICH-TP.clin.merged.picked.txt

  • Number of patients = 64

  • Number of clustering approaches = 8

  • Number of selected clinical features = 10

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[8] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)