Correlation between aggregated molecular cancer subtypes and selected clinical features
Kidney Renal Papillary Cell Carcinoma (Primary solid tumor)
23 September 2013  |  analyses__2013_09_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1125R02
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 10 clinical features across 129 patients, 12 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'NEOPLASM.DISEASESTAGE',  'PATHOLOGY.T.STAGE', and 'PATHOLOGY.M.STAGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'NEOPLASM.DISEASESTAGE',  'PATHOLOGY.T.STAGE', and 'GENDER'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death',  'NEOPLASM.DISEASESTAGE',  'PATHOLOGY.T.STAGE',  'PATHOLOGY.M.STAGE', and 'GENDER'.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'Time to Death'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 10 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 12 significant findings detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 0.257
(1.00)
0.0119
(0.559)
0.236
(1.00)
0.000288
(0.0164)
0.332
(1.00)
0.532
(1.00)
0.802
(1.00)
0.000543
(0.0304)
AGE ANOVA 0.68
(1.00)
0.387
(1.00)
0.476
(1.00)
0.243
(1.00)
0.572
(1.00)
0.724
(1.00)
0.427
(1.00)
0.0693
(1.00)
NEOPLASM DISEASESTAGE Chi-square test 0.0116
(0.557)
9.5e-08
(5.98e-06)
4.4e-05
(0.00268)
6.6e-07
(4.09e-05)
0.00993
(0.486)
0.208
(1.00)
0.037
(1.00)
0.00845
(0.422)
PATHOLOGY T STAGE Chi-square test 0.0469
(1.00)
8.77e-09
(5.61e-07)
7.5e-05
(0.0045)
0.00026
(0.0151)
0.121
(1.00)
0.0266
(1.00)
0.341
(1.00)
0.056
(1.00)
PATHOLOGY N STAGE Chi-square test 0.68
(1.00)
0.0664
(1.00)
0.0645
(1.00)
0.0133
(0.61)
0.502
(1.00)
0.22
(1.00)
0.27
(1.00)
0.101
(1.00)
PATHOLOGY M STAGE Chi-square test 0.123
(1.00)
0.00161
(0.0855)
0.00549
(0.28)
0.000216
(0.0128)
0.101
(1.00)
0.431
(1.00)
0.158
(1.00)
0.0291
(1.00)
GENDER Fisher's exact test 0.117
(1.00)
0.507
(1.00)
0.00126
(0.0678)
0.000753
(0.0414)
0.00486
(0.253)
0.0225
(1.00)
0.118
(1.00)
0.119
(1.00)
KARNOFSKY PERFORMANCE SCORE ANOVA 0.581
(1.00)
0.144
(1.00)
0.0414
(1.00)
0.35
(1.00)
0.381
(1.00)
0.665
(1.00)
0.601
(1.00)
0.255
(1.00)
NUMBERPACKYEARSSMOKED ANOVA
YEAROFTOBACCOSMOKINGONSET ANOVA
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 27 43 59
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.257 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 119 15 0.0 - 194.8 (13.7)
subtype1 24 2 0.0 - 194.8 (12.5)
subtype2 40 6 0.0 - 80.8 (9.9)
subtype3 55 7 0.0 - 129.9 (20.1)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.68 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 126 59.8 (12.3)
subtype1 26 60.3 (11.4)
subtype2 41 60.9 (12.6)
subtype3 59 58.8 (12.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0116 (Chi-square test), Q value = 0.56

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 69 10 30 10
subtype1 18 2 3 1
subtype2 16 3 14 8
subtype3 35 5 13 1

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0469 (Chi-square test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 74 16 39
subtype1 19 3 5
subtype2 17 6 20
subtype3 38 7 14

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.68 (Chi-square test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 26 12 4
subtype1 3 1 0
subtype2 12 8 3
subtype3 11 3 1

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.123 (Chi-square test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 57 6 57
subtype1 12 0 12
subtype2 17 5 18
subtype3 28 1 27

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.117 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 40 89
subtype1 4 23
subtype2 16 27
subtype3 20 39

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.581 (ANOVA), Q value = 1

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 22 87.7 (23.3)
subtype1 3 96.7 (5.8)
subtype2 8 81.2 (33.1)
subtype3 11 90.0 (17.3)

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #2: 'METHLYATION CNMF'

Table S10.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 31 35 47
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.0119 (logrank test), Q value = 0.56

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 103 13 0.0 - 194.8 (13.6)
subtype1 29 3 0.0 - 80.8 (24.5)
subtype2 33 9 0.2 - 194.8 (11.3)
subtype3 41 1 0.0 - 129.9 (11.6)

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.387 (ANOVA), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 110 60.1 (12.5)
subtype1 30 62.0 (11.9)
subtype2 34 60.9 (15.5)
subtype3 46 58.2 (10.1)

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 9.5e-08 (Chi-square test), Q value = 6e-06

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 64 7 29 9
subtype1 24 2 2 2
subtype2 6 2 20 7
subtype3 34 3 7 0

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 8.77e-09 (Chi-square test), Q value = 5.6e-07

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 67 9 37
subtype1 25 1 5
subtype2 6 3 26
subtype3 36 5 6

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.0664 (Chi-square test), Q value = 1

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 24 11 4
subtype1 4 1 1
subtype2 11 10 3
subtype3 9 0 0

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.00161 (Chi-square test), Q value = 0.086

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 47 5 57
subtype1 17 1 12
subtype2 18 4 12
subtype3 12 0 33

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.507 (Fisher's exact test), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 36 77
subtype1 9 22
subtype2 14 21
subtype3 13 34

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.144 (ANOVA), Q value = 1

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 21 91.9 (12.9)
subtype1 6 81.7 (20.4)
subtype2 2 95.0 (7.1)
subtype3 13 96.2 (5.1)

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S19.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 44 31 22 21
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.236 (logrank test), Q value = 1

Table S20.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 109 15 0.0 - 194.8 (14.1)
subtype1 41 9 0.2 - 194.8 (11.1)
subtype2 27 2 0.0 - 53.8 (13.6)
subtype3 22 2 0.0 - 96.9 (22.3)
subtype4 19 2 3.8 - 129.9 (34.2)

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.476 (ANOVA), Q value = 1

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 115 59.8 (12.7)
subtype1 43 61.0 (14.5)
subtype2 30 59.9 (11.2)
subtype3 22 61.0 (11.7)
subtype4 20 55.9 (11.6)

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 4.4e-05 (Chi-square test), Q value = 0.0027

Table S22.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 62 8 30 10
subtype1 11 4 18 9
subtype2 21 1 5 0
subtype3 13 3 6 0
subtype4 17 0 1 1

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 7.5e-05 (Chi-square test), Q value = 0.0045

Table S23.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 66 14 38
subtype1 13 5 26
subtype2 22 5 4
subtype3 13 3 6
subtype4 18 1 2

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0645 (Chi-square test), Q value = 1

Table S24.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 24 12 4
subtype1 10 11 3
subtype2 3 0 0
subtype3 9 1 0
subtype4 2 0 1

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.00549 (Chi-square test), Q value = 0.28

Table S25.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 54 6 50
subtype1 23 6 13
subtype2 8 0 19
subtype3 13 0 9
subtype4 10 0 9

Figure S22.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.00126 (Fisher's exact test), Q value = 0.068

Table S26.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 37 81
subtype1 23 21
subtype2 8 23
subtype3 2 20
subtype4 4 17

Figure S23.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0414 (ANOVA), Q value = 1

Table S27.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 18 86.1 (25.5)
subtype1 4 57.5 (46.5)
subtype2 7 97.1 (4.9)
subtype3 2 95.0 (7.1)
subtype4 5 90.0 (0.0)

Figure S24.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S28.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 21 58 39
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.000288 (logrank test), Q value = 0.016

Table S29.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 109 15 0.0 - 194.8 (14.1)
subtype1 19 7 0.2 - 80.8 (11.0)
subtype2 52 3 0.0 - 194.8 (13.9)
subtype3 38 5 0.0 - 123.6 (19.8)

Figure S25.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.243 (ANOVA), Q value = 1

Table S30.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 115 59.8 (12.7)
subtype1 20 58.0 (15.5)
subtype2 56 58.5 (11.1)
subtype3 39 62.6 (13.1)

Figure S26.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 6.6e-07 (Chi-square test), Q value = 4.1e-05

Table S31.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 62 8 30 10
subtype1 8 3 3 7
subtype2 39 3 7 1
subtype3 15 2 20 2

Figure S27.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.00026 (Chi-square test), Q value = 0.015

Table S32.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 66 14 38
subtype1 9 2 10
subtype2 42 9 7
subtype3 15 3 21

Figure S28.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0133 (Chi-square test), Q value = 0.61

Table S33.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 24 12 4
subtype1 2 6 3
subtype2 7 1 0
subtype3 15 5 1

Figure S29.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.000216 (Chi-square test), Q value = 0.013

Table S34.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 54 6 50
subtype1 11 4 6
subtype2 18 0 33
subtype3 25 2 11

Figure S30.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.000753 (Fisher's exact test), Q value = 0.041

Table S35.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 37 81
subtype1 14 7
subtype2 12 46
subtype3 11 28

Figure S31.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.35 (ANOVA), Q value = 1

Table S36.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 18 86.1 (25.5)
subtype1 4 80.0 (27.1)
subtype2 12 95.0 (5.2)
subtype3 2 45.0 (63.6)

Figure S32.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S37.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3 4
Number of samples 32 39 34 18
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.332 (logrank test), Q value = 1

Table S38.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 15 0.0 - 194.8 (14.1)
subtype1 30 2 0.0 - 123.6 (15.5)
subtype2 37 7 0.2 - 194.8 (20.1)
subtype3 29 2 0.0 - 96.9 (11.4)
subtype4 17 4 0.5 - 86.7 (14.1)

Figure S33.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.572 (ANOVA), Q value = 1

Table S39.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 120 60.1 (12.2)
subtype1 31 61.2 (12.0)
subtype2 39 58.2 (14.5)
subtype3 32 61.9 (9.5)
subtype4 18 59.1 (11.7)

Figure S34.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00993 (Chi-square test), Q value = 0.49

Table S40.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 64 9 30 10
subtype1 17 3 10 0
subtype2 21 4 6 7
subtype3 21 2 6 0
subtype4 5 0 8 3

Figure S35.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.121 (Chi-square test), Q value = 1

Table S41.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 69 15 39
subtype1 18 3 11
subtype2 22 4 13
subtype3 23 6 5
subtype4 6 2 10

Figure S36.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.502 (Chi-square test), Q value = 1

Table S42.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 25 12 4
subtype1 7 2 0
subtype2 7 6 3
subtype3 5 1 0
subtype4 6 3 1

Figure S37.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.101 (Chi-square test), Q value = 1

Table S43.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 55 6 53
subtype1 16 0 14
subtype2 18 3 18
subtype3 13 0 16
subtype4 8 3 5

Figure S38.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.00486 (Fisher's exact test), Q value = 0.25

Table S44.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 38 85
subtype1 3 29
subtype2 16 23
subtype3 10 24
subtype4 9 9

Figure S39.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.381 (ANOVA), Q value = 1

Table S45.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 22 87.7 (23.3)
subtype1 6 95.0 (5.5)
subtype2 11 80.0 (31.3)
subtype3 3 96.7 (5.8)
subtype4 2 95.0 (7.1)

Figure S40.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S46.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 43 33 47
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.532 (logrank test), Q value = 1

Table S47.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 15 0.0 - 194.8 (14.1)
subtype1 41 6 0.0 - 96.9 (14.6)
subtype2 30 2 0.0 - 123.6 (13.6)
subtype3 42 7 0.1 - 194.8 (17.1)

Figure S41.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.724 (ANOVA), Q value = 1

Table S48.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 120 60.1 (12.2)
subtype1 42 61.2 (12.7)
subtype2 32 60.1 (9.7)
subtype3 46 59.1 (13.4)

Figure S42.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.208 (Chi-square test), Q value = 1

Table S49.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 64 9 30 10
subtype1 20 3 16 2
subtype2 17 2 6 1
subtype3 27 4 8 7

Figure S43.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.0266 (Chi-square test), Q value = 1

Table S50.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 69 15 39
subtype1 21 3 19
subtype2 20 8 5
subtype3 28 4 15

Figure S44.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.22 (Chi-square test), Q value = 1

Table S51.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 25 12 4
subtype1 10 5 1
subtype2 6 0 0
subtype3 9 7 3

Figure S45.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 0.431 (Chi-square test), Q value = 1

Table S52.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 55 6 53
subtype1 24 2 14
subtype2 12 1 14
subtype3 19 3 25

Figure S46.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.0225 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 38 85
subtype1 7 36
subtype2 11 22
subtype3 20 27

Figure S47.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.665 (ANOVA), Q value = 1

Table S54.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 22 87.7 (23.3)
subtype1 8 82.5 (33.7)
subtype2 3 96.7 (5.8)
subtype3 11 89.1 (17.0)

Figure S48.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S55.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 37 42 28
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.802 (logrank test), Q value = 1

Table S56.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 97 13 0.0 - 194.8 (14.1)
subtype1 33 4 0.0 - 123.6 (14.6)
subtype2 40 7 0.1 - 194.8 (16.6)
subtype3 24 2 0.0 - 63.7 (7.8)

Figure S49.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.427 (ANOVA), Q value = 1

Table S57.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 104 60.4 (12.3)
subtype1 36 61.9 (11.5)
subtype2 42 58.5 (14.5)
subtype3 26 61.5 (9.3)

Figure S50.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.037 (Chi-square test), Q value = 1

Table S58.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 59 6 29 9
subtype1 16 2 16 1
subtype2 26 3 6 7
subtype3 17 1 7 1

Figure S51.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.341 (Chi-square test), Q value = 1

Table S59.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 62 8 37
subtype1 17 3 17
subtype2 27 2 13
subtype3 18 3 7

Figure S52.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.27 (Chi-square test), Q value = 1

Table S60.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 23 11 4
subtype1 11 2 1
subtype2 7 6 3
subtype3 5 3 0

Figure S53.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.158 (Chi-square test), Q value = 1

Table S61.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 45 5 53
subtype1 19 1 14
subtype2 19 3 20
subtype3 7 1 19

Figure S54.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.118 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 34 73
subtype1 8 29
subtype2 18 24
subtype3 8 20

Figure S55.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.601 (ANOVA), Q value = 1

Table S63.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 21 91.9 (12.9)
subtype1 4 95.0 (5.8)
subtype2 11 89.1 (17.0)
subtype3 6 95.0 (5.5)

Figure S56.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S64.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 10 45 52
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.000543 (logrank test), Q value = 0.03

Table S65.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 97 13 0.0 - 194.8 (14.1)
subtype1 10 4 0.9 - 43.2 (13.3)
subtype2 41 8 0.1 - 194.8 (14.1)
subtype3 46 1 0.0 - 123.6 (13.9)

Figure S57.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.0693 (ANOVA), Q value = 1

Table S66.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 104 60.4 (12.3)
subtype1 10 67.2 (12.2)
subtype2 44 57.8 (14.0)
subtype3 50 61.4 (10.1)

Figure S58.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00845 (Chi-square test), Q value = 0.42

Table S67.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 59 6 29 9
subtype1 3 0 7 0
subtype2 25 3 9 8
subtype3 31 3 13 1

Figure S59.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.056 (Chi-square test), Q value = 1

Table S68.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 62 8 37
subtype1 3 0 7
subtype2 26 2 17
subtype3 33 6 13

Figure S60.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.101 (Chi-square test), Q value = 1

Table S69.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2
ALL 23 11 4
subtype1 4 2 1
subtype2 8 8 3
subtype3 11 1 0

Figure S61.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.0291 (Chi-square test), Q value = 1

Table S70.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 45 5 53
subtype1 8 0 1
subtype2 18 4 23
subtype3 19 1 29

Figure S62.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.119 (Fisher's exact test), Q value = 1

Table S71.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 34 73
subtype1 3 7
subtype2 19 26
subtype3 12 40

Figure S63.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.255 (ANOVA), Q value = 1

Table S72.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 21 91.9 (12.9)
subtype1 1 90.0 (NA)
subtype2 11 89.1 (17.0)
subtype3 9 95.6 (5.3)

Figure S64.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

Methods & Data
Input
  • Cluster data file = KIRP-TP.mergedcluster.txt

  • Clinical data file = KIRP-TP.clin.merged.picked.txt

  • Number of patients = 129

  • Number of clustering approaches = 8

  • Number of selected clinical features = 10

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)