Correlation between aggregated molecular cancer subtypes and selected clinical features
Sarcoma (Primary solid tumor)
23 September 2013  |  analyses__2013_09_23
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2013): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C18W3BPR
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 3 clinical features across 66 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 4 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'GENDER'.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 2 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 2 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 3 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Time
to
Death
AGE GENDER
Statistical Tests logrank test t-test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.262
(1.00)
0.0566
(1.00)
0.00578
(0.139)
METHLYATION CNMF 0.105
(1.00)
0.154
(1.00)
0.2
(1.00)
RNAseq CNMF subtypes 0.802
(1.00)
0.207
(1.00)
0.011
(0.252)
RNAseq cHierClus subtypes 0.467
(1.00)
0.199
(1.00)
0.135
(1.00)
MIRSEQ CNMF 0.0619
(1.00)
0.182
(1.00)
0.208
(1.00)
MIRSEQ CHIERARCHICAL 0.734
(1.00)
0.34
(1.00)
0.205
(1.00)
MIRseq Mature CNMF subtypes 0.591
(1.00)
0.226
(1.00)
0.0488
(1.00)
MIRseq Mature cHierClus subtypes 0.894
(1.00)
0.5
(1.00)
0.0828
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 18 19 8 12
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.262 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 57 18 0.1 - 143.4 (18.5)
subtype1 18 4 0.1 - 143.4 (13.4)
subtype2 19 6 2.0 - 108.1 (23.1)
subtype3 8 4 1.1 - 42.8 (12.2)
subtype4 12 4 0.1 - 116.9 (30.0)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.0566 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 57 63.4 (11.5)
subtype1 18 68.9 (8.8)
subtype2 19 60.9 (11.0)
subtype3 8 64.2 (6.4)
subtype4 12 58.2 (15.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.00578 (Fisher's exact test), Q value = 0.14

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 28 29
subtype1 13 5
subtype2 4 15
subtype3 6 2
subtype4 5 7

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #2: 'METHLYATION CNMF'

Table S5.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 22 19 16
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.105 (logrank test), Q value = 1

Table S6.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 57 18 0.1 - 143.4 (18.5)
subtype1 22 7 3.2 - 143.4 (27.5)
subtype2 19 8 0.1 - 108.1 (9.7)
subtype3 16 3 0.1 - 116.9 (22.0)

Figure S4.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.154 (ANOVA), Q value = 1

Table S7.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 57 63.4 (11.5)
subtype1 22 64.4 (12.5)
subtype2 19 66.1 (9.3)
subtype3 16 58.8 (11.9)

Figure S5.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.2 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 28 29
subtype1 9 13
subtype2 8 11
subtype3 11 5

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S9.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 11 9 13 1 8 8
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.802 (logrank test), Q value = 1

Table S10.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 49 16 0.1 - 143.4 (17.8)
subtype1 11 5 1.1 - 143.4 (14.0)
subtype2 9 2 0.1 - 108.1 (8.6)
subtype3 13 5 3.2 - 70.5 (24.5)
subtype5 8 2 0.1 - 75.5 (18.9)
subtype6 8 2 4.1 - 116.9 (22.0)

Figure S7.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.207 (ANOVA), Q value = 1

Table S11.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 49 63.1 (11.9)
subtype1 11 63.8 (13.9)
subtype2 9 64.3 (11.4)
subtype3 13 65.8 (10.0)
subtype5 8 65.6 (10.8)
subtype6 8 54.0 (11.6)

Figure S8.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.011 (Chi-square test), Q value = 0.25

Table S12.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 26 23
subtype1 7 4
subtype2 5 4
subtype3 3 10
subtype5 3 5
subtype6 8 0

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S13.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 2 3
Number of samples 16 34
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.467 (logrank test), Q value = 1

Table S14.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 50 16 0.1 - 143.4 (18.1)
subtype2 16 4 0.1 - 116.9 (22.0)
subtype3 34 12 0.1 - 143.4 (17.4)

Figure S10.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.199 (t-test), Q value = 1

Table S15.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 50 63.1 (11.8)
subtype2 16 59.8 (12.4)
subtype3 34 64.6 (11.3)

Figure S11.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.135 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 26 24
subtype2 11 5
subtype3 15 19

Figure S12.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S17.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3 4
Number of samples 6 30 12 18
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0619 (logrank test), Q value = 1

Table S18.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 66 21 0.1 - 143.4 (18.9)
subtype1 6 3 0.1 - 14.0 (8.0)
subtype2 30 10 0.5 - 143.4 (19.7)
subtype3 12 4 4.5 - 70.5 (23.6)
subtype4 18 4 0.1 - 116.9 (22.8)

Figure S13.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.182 (ANOVA), Q value = 1

Table S19.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 62.6 (12.1)
subtype1 6 71.5 (13.6)
subtype2 30 63.1 (10.5)
subtype3 12 62.2 (11.0)
subtype4 18 59.1 (14.0)

Figure S14.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.208 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 33 33
subtype1 4 2
subtype2 13 17
subtype3 4 8
subtype4 12 6

Figure S15.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S21.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 2 27 37
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.734 (logrank test), Q value = 1

Table S22.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 64 21 0.1 - 143.4 (19.7)
subtype2 27 9 0.1 - 116.9 (15.0)
subtype3 37 12 0.1 - 143.4 (20.0)

Figure S16.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.34 (t-test), Q value = 1

Table S23.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 64 62.6 (12.3)
subtype2 27 60.8 (14.2)
subtype3 37 63.9 (10.7)

Figure S17.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.205 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 31 33
subtype2 16 11
subtype3 15 22

Figure S18.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S25.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 13 30 23
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.591 (logrank test), Q value = 1

Table S26.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 66 21 0.1 - 143.4 (18.9)
subtype1 13 5 3.2 - 70.5 (14.0)
subtype2 30 10 0.1 - 143.4 (19.7)
subtype3 23 6 0.1 - 116.9 (22.6)

Figure S19.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.226 (ANOVA), Q value = 1

Table S27.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 62.6 (12.1)
subtype1 13 66.1 (13.4)
subtype2 30 63.6 (10.7)
subtype3 23 59.3 (12.8)

Figure S20.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.0488 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 33 33
subtype1 4 9
subtype2 13 17
subtype3 16 7

Figure S21.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S29.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 2 3
Number of samples 36 30
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.894 (logrank test), Q value = 1

Table S30.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 66 21 0.1 - 143.4 (18.9)
subtype2 36 12 0.1 - 143.4 (19.7)
subtype3 30 9 0.1 - 116.9 (15.0)

Figure S22.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.5 (t-test), Q value = 1

Table S31.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 62.6 (12.1)
subtype2 36 63.6 (10.6)
subtype3 30 61.5 (13.8)

Figure S23.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.0828 (Fisher's exact test), Q value = 1

Table S32.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 33 33
subtype2 14 22
subtype3 19 11

Figure S24.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Methods & Data
Input
  • Cluster data file = SARC-TP.mergedcluster.txt

  • Clinical data file = SARC-TP.clin.merged.picked.txt

  • Number of patients = 66

  • Number of clustering approaches = 8

  • Number of selected clinical features = 3

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[7] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[8] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)