This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and selected clinical features.
Testing the association between copy number variation 34 arm-level events and 5 clinical features across 10 patients, no significant finding detected with Q value < 0.25.
-
No arm-level cnvs related to clinical features.
Table 1. Get Full Table Overview of the association between significant copy number variation of 34 arm-level events and 5 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, no significant finding detected.
|
Clinical Features |
Time to Death |
AGE |
NEOPLASM DISEASESTAGE |
PATHOLOGY T STAGE |
GENDER | ||
| nCNV (%) | nWild-Type | logrank test | t-test | Fisher's exact test | NULL | Fisher's exact test | |
| 4p gain | 5 (50%) | 5 |
0.0784 (1.00) |
0.971 (1.00) |
0.524 (1.00) |
0.206 (1.00) |
|
| 4q gain | 5 (50%) | 5 |
0.0784 (1.00) |
0.971 (1.00) |
0.524 (1.00) |
0.206 (1.00) |
|
| 5p gain | 5 (50%) | 5 |
0.0784 (1.00) |
0.971 (1.00) |
0.524 (1.00) |
0.206 (1.00) |
|
| 5q gain | 4 (40%) | 6 |
0.514 (1.00) |
0.994 (1.00) |
0.714 (1.00) |
0.524 (1.00) |
|
| 7p gain | 3 (30%) | 7 |
0.163 (1.00) |
0.136 (1.00) |
0.714 (1.00) |
1 (1.00) |
|
| 7q gain | 3 (30%) | 7 |
0.163 (1.00) |
0.136 (1.00) |
0.714 (1.00) |
1 (1.00) |
|
| 8p gain | 4 (40%) | 6 |
0.28 (1.00) |
0.734 (1.00) |
1 (1.00) |
1 (1.00) |
|
| 8q gain | 5 (50%) | 5 |
0.28 (1.00) |
0.658 (1.00) |
1 (1.00) |
1 (1.00) |
|
| 10q gain | 3 (30%) | 7 |
0.596 (1.00) |
0.456 (1.00) |
1 (1.00) |
||
| 12p gain | 6 (60%) | 4 |
0.378 (1.00) |
0.487 (1.00) |
0.381 (1.00) |
0.524 (1.00) |
|
| 12q gain | 5 (50%) | 5 |
0.0784 (1.00) |
0.971 (1.00) |
0.524 (1.00) |
0.206 (1.00) |
|
| 16p gain | 5 (50%) | 5 |
0.0784 (1.00) |
0.971 (1.00) |
0.524 (1.00) |
0.206 (1.00) |
|
| 16q gain | 5 (50%) | 5 |
0.0784 (1.00) |
0.971 (1.00) |
0.524 (1.00) |
0.206 (1.00) |
|
| 19p gain | 7 (70%) | 3 |
0.87 (1.00) |
0.956 (1.00) |
1 (1.00) |
1 (1.00) |
|
| 19q gain | 6 (60%) | 4 |
0.467 (1.00) |
0.507 (1.00) |
1 (1.00) |
0.524 (1.00) |
|
| 20p gain | 3 (30%) | 7 |
0.175 (1.00) |
0.191 (1.00) |
0.167 (1.00) |
||
| 20q gain | 5 (50%) | 5 |
0.0784 (1.00) |
0.971 (1.00) |
0.524 (1.00) |
0.206 (1.00) |
|
| 21q gain | 5 (50%) | 5 |
0.799 (1.00) |
0.528 (1.00) |
1 (1.00) |
1 (1.00) |
|
| 1p loss | 5 (50%) | 5 |
0.799 (1.00) |
0.287 (1.00) |
1 (1.00) |
1 (1.00) |
|
| 1q loss | 4 (40%) | 6 |
0.899 (1.00) |
0.113 (1.00) |
0.714 (1.00) |
1 (1.00) |
|
| 3p loss | 3 (30%) | 7 |
0.0793 (1.00) |
0.423 (1.00) |
1 (1.00) |
||
| 8p loss | 3 (30%) | 7 |
0.87 (1.00) |
0.0886 (1.00) |
0.5 (1.00) |
1 (1.00) |
|
| 9p loss | 3 (30%) | 7 |
0.596 (1.00) |
0.561 (1.00) |
1 (1.00) |
||
| 9q loss | 3 (30%) | 7 |
0.596 (1.00) |
0.561 (1.00) |
1 (1.00) |
||
| 11p loss | 5 (50%) | 5 |
0.899 (1.00) |
0.769 (1.00) |
0.381 (1.00) |
1 (1.00) |
|
| 11q loss | 5 (50%) | 5 |
0.899 (1.00) |
0.769 (1.00) |
0.381 (1.00) |
1 (1.00) |
|
| 13q loss | 5 (50%) | 5 |
0.381 (1.00) |
0.883 (1.00) |
1 (1.00) |
1 (1.00) |
|
| 15q loss | 4 (40%) | 6 |
0.28 (1.00) |
0.587 (1.00) |
1 (1.00) |
0.524 (1.00) |
|
| 17p loss | 5 (50%) | 5 |
0.043 (1.00) |
0.797 (1.00) |
0.19 (1.00) |
1 (1.00) |
|
| 17q loss | 3 (30%) | 7 |
0.497 (1.00) |
0.399 (1.00) |
1 (1.00) |
||
| 18p loss | 4 (40%) | 6 |
0.987 (1.00) |
0.617 (1.00) |
0.714 (1.00) |
0.524 (1.00) |
|
| 18q loss | 4 (40%) | 6 |
0.987 (1.00) |
0.617 (1.00) |
0.714 (1.00) |
0.524 (1.00) |
|
| 22q loss | 6 (60%) | 4 |
0.994 (1.00) |
0.872 (1.00) |
1 (1.00) |
0.524 (1.00) |
|
| xq loss | 3 (30%) | 7 |
0.149 (1.00) |
0.0324 (1.00) |
0.143 (1.00) |
1 (1.00) |
-
Copy number data file = transformed.cor.cli.txt
-
Clinical data file = ACC-TP.merged_data.txt
-
Number of patients = 10
-
Number of significantly arm-level cnvs = 34
-
Number of selected clinical features = 5
-
Exclude regions that fewer than K tumors have mutations, K = 3
For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R
For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.