Correlation between aggregated molecular cancer subtypes and selected clinical features
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (Primary solid tumor)
16 April 2014  |  analyses__2014_04_16
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1FX7828
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 7 different clustering approaches and 3 clinical features across 21 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that correlate to 'Time to Death'.

  • 2 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 2 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 7 different clustering approaches and 3 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Time
to
Death
AGE GENDER
Statistical Tests logrank test t-test Fisher's exact test
METHLYATION CNMF 0.585
(1.00)
0.928
(1.00)
0.827
(1.00)
RNAseq CNMF subtypes 0.0302
(0.604)
0.0691
(1.00)
0.0669
(1.00)
RNAseq cHierClus subtypes 0.00815
(0.171)
0.359
(1.00)
0.336
(1.00)
MIRSEQ CNMF 0.0458
(0.871)
0.577
(1.00)
0.65
(1.00)
MIRSEQ CHIERARCHICAL 0.352
(1.00)
0.974
(1.00)
0.41
(1.00)
MIRseq Mature CNMF subtypes 0.434
(1.00)
0.994
(1.00)
0.717
(1.00)
MIRseq Mature cHierClus subtypes 0.264
(1.00)
0.818
(1.00)
0.642
(1.00)
Clustering Approach #1: 'METHLYATION CNMF'

Table S1.  Description of clustering approach #1: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 3 8 10
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.585 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 21 4 2.0 - 211.2 (31.7)
subtype1 3 0 22.3 - 127.3 (27.4)
subtype2 8 1 24.7 - 196.6 (44.3)
subtype3 10 3 2.0 - 211.2 (31.4)

Figure S1.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.928 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 21 54.0 (12.4)
subtype1 3 52.7 (9.5)
subtype2 8 53.0 (11.4)
subtype3 10 55.1 (14.8)

Figure S2.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.827 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 13 8
subtype1 2 1
subtype2 4 4
subtype3 7 3

Figure S3.  Get High-res Image Clustering Approach #1: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #2: 'RNAseq CNMF subtypes'

Table S5.  Description of clustering approach #2: 'RNAseq CNMF subtypes'

Cluster Labels 1 2
Number of samples 12 9
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.0302 (logrank test), Q value = 0.6

Table S6.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 21 4 2.0 - 211.2 (31.7)
subtype1 12 2 2.0 - 211.2 (46.8)
subtype2 9 2 4.1 - 74.1 (24.7)

Figure S4.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.0691 (t-test), Q value = 1

Table S7.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 21 54.0 (12.4)
subtype1 12 58.4 (10.0)
subtype2 9 48.0 (13.3)

Figure S5.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.0669 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 13 8
subtype1 5 7
subtype2 8 1

Figure S6.  Get High-res Image Clustering Approach #2: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #3: 'RNAseq cHierClus subtypes'

Table S9.  Description of clustering approach #3: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2
Number of samples 6 15
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.00815 (logrank test), Q value = 0.17

Table S10.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 21 4 2.0 - 211.2 (31.7)
subtype1 6 2 4.1 - 74.1 (24.8)
subtype2 15 2 2.0 - 211.2 (35.5)

Figure S7.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.359 (t-test), Q value = 1

Table S11.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 21 54.0 (12.4)
subtype1 6 49.7 (13.1)
subtype2 15 55.7 (12.2)

Figure S8.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.336 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 13 8
subtype1 5 1
subtype2 8 7

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #4: 'MIRSEQ CNMF'

Table S13.  Description of clustering approach #4: 'MIRSEQ CNMF'

Cluster Labels 1 2
Number of samples 10 10
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0458 (logrank test), Q value = 0.87

Table S14.  Clustering Approach #4: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 20 4 2.0 - 211.2 (31.4)
subtype1 10 1 2.0 - 211.2 (31.4)
subtype2 10 3 4.1 - 106.1 (32.7)

Figure S10.  Get High-res Image Clustering Approach #4: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.577 (t-test), Q value = 1

Table S15.  Clustering Approach #4: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 20 53.9 (12.7)
subtype1 10 55.5 (10.5)
subtype2 10 52.2 (15.1)

Figure S11.  Get High-res Image Clustering Approach #4: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.65 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #4: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 12 8
subtype1 5 5
subtype2 7 3

Figure S12.  Get High-res Image Clustering Approach #4: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

Clustering Approach #5: 'MIRSEQ CHIERARCHICAL'

Table S17.  Description of clustering approach #5: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5
Number of samples 2 3 6 5 4
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.352 (logrank test), Q value = 1

Table S18.  Clustering Approach #5: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 18 4 2.0 - 211.2 (33.6)
subtype2 3 1 4.1 - 211.2 (52.0)
subtype3 6 2 4.6 - 106.1 (33.6)
subtype4 5 1 22.3 - 47.4 (29.9)
subtype5 4 0 2.0 - 196.6 (36.8)

Figure S13.  Get High-res Image Clustering Approach #5: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.974 (ANOVA), Q value = 1

Table S19.  Clustering Approach #5: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 18 53.5 (13.4)
subtype2 3 55.0 (15.7)
subtype3 6 54.7 (18.4)
subtype4 5 51.0 (6.7)
subtype5 4 53.8 (14.8)

Figure S14.  Get High-res Image Clustering Approach #5: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.41 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #5: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 10 8
subtype2 1 2
subtype3 4 2
subtype4 4 1
subtype5 1 3

Figure S15.  Get High-res Image Clustering Approach #5: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

Clustering Approach #6: 'MIRseq Mature CNMF subtypes'

Table S21.  Description of clustering approach #6: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 5 6 9
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.434 (logrank test), Q value = 1

Table S22.  Clustering Approach #6: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 20 4 2.0 - 211.2 (31.4)
subtype1 5 0 2.0 - 196.6 (27.4)
subtype2 6 2 22.3 - 106.1 (35.6)
subtype3 9 2 4.1 - 211.2 (31.7)

Figure S16.  Get High-res Image Clustering Approach #6: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.994 (ANOVA), Q value = 1

Table S23.  Clustering Approach #6: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 20 53.9 (12.7)
subtype1 5 54.4 (12.9)
subtype2 6 53.7 (8.9)
subtype3 9 53.7 (15.9)

Figure S17.  Get High-res Image Clustering Approach #6: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.717 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #6: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 12 8
subtype1 2 3
subtype2 4 2
subtype3 6 3

Figure S18.  Get High-res Image Clustering Approach #6: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

Clustering Approach #7: 'MIRseq Mature cHierClus subtypes'

Table S25.  Description of clustering approach #7: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2
Number of samples 6 14
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.264 (logrank test), Q value = 1

Table S26.  Clustering Approach #7: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 20 4 2.0 - 211.2 (31.4)
subtype1 6 0 2.0 - 196.6 (29.2)
subtype2 14 4 4.1 - 211.2 (33.6)

Figure S19.  Get High-res Image Clustering Approach #7: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.818 (t-test), Q value = 1

Table S27.  Clustering Approach #7: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 20 53.9 (12.7)
subtype1 6 54.8 (11.5)
subtype2 14 53.4 (13.6)

Figure S20.  Get High-res Image Clustering Approach #7: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.642 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #7: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 12 8
subtype1 3 3
subtype2 9 5

Figure S21.  Get High-res Image Clustering Approach #7: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

Methods & Data
Input
  • Cluster data file = DLBC-TP.mergedcluster.txt

  • Clinical data file = DLBC-TP.merged_data.txt

  • Number of patients = 21

  • Number of clustering approaches = 7

  • Number of selected clinical features = 3

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)