Correlation between aggregated molecular cancer subtypes and selected clinical features
Esophageal Carcinoma (Primary solid tumor)
16 April 2014  |  analyses__2014_04_16
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1C24V1G
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 8 clinical features across 57 patients, 7 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'AGE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'AGE'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'AGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'AGE'.

  • 2 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'AGE'.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'AGE'.

  • 2 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'AGE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 8 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 7 significant findings detected.

Clinical
Features
Time
to
Death
AGE NEOPLASM
DISEASESTAGE
PATHOLOGY
T
STAGE
PATHOLOGY
N
STAGE
PATHOLOGY
M
STAGE
GENDER NUMBERPACKYEARSSMOKED
Statistical Tests logrank test t-test Chi-square test Chi-square test Chi-square test Chi-square test Fisher's exact test t-test
Copy Number Ratio CNMF subtypes 0.279
(1.00)
0.216
(1.00)
0.691
(1.00)
0.282
(1.00)
0.444
(1.00)
0.213
(1.00)
0.261
(1.00)
0.109
(1.00)
METHLYATION CNMF 0.99
(1.00)
0.00364
(0.211)
0.103
(1.00)
0.0283
(1.00)
0.0932
(1.00)
0.136
(1.00)
0.292
(1.00)
0.325
(1.00)
RNAseq CNMF subtypes 0.589
(1.00)
0.00019
(0.0114)
0.4
(1.00)
0.0963
(1.00)
0.0278
(1.00)
0.127
(1.00)
0.0963
(1.00)
0.368
(1.00)
RNAseq cHierClus subtypes 0.0845
(1.00)
6.59e-05
(0.00409)
0.169
(1.00)
0.071
(1.00)
0.0252
(1.00)
0.0857
(1.00)
0.121
(1.00)
0.498
(1.00)
MIRSEQ CNMF 0.818
(1.00)
0.000124
(0.00757)
0.214
(1.00)
0.0423
(1.00)
0.0554
(1.00)
0.0648
(1.00)
0.0768
(1.00)
0.347
(1.00)
MIRSEQ CHIERARCHICAL 0.699
(1.00)
1.77e-05
(0.00113)
0.039
(1.00)
0.0152
(0.865)
0.0155
(0.865)
0.0178
(0.943)
0.0338
(1.00)
0.498
(1.00)
MIRseq Mature CNMF subtypes 0.954
(1.00)
0.000265
(0.0156)
0.201
(1.00)
0.0617
(1.00)
0.0916
(1.00)
0.173
(1.00)
0.0572
(1.00)
0.739
(1.00)
MIRseq Mature cHierClus subtypes 0.699
(1.00)
1.77e-05
(0.00113)
0.039
(1.00)
0.0152
(0.865)
0.0155
(0.865)
0.0178
(0.943)
0.0338
(1.00)
0.498
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 15 26 15
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.279 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 53 13 0.0 - 30.7 (1.0)
subtype1 14 3 0.1 - 30.7 (3.3)
subtype2 24 2 0.0 - 29.0 (0.1)
subtype3 15 8 0.1 - 20.1 (3.5)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.216 (ANOVA), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 56 62.3 (11.8)
subtype1 15 65.5 (12.0)
subtype2 26 59.3 (11.2)
subtype3 15 64.1 (12.3)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.691 (Chi-square test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 16 11 5 8 5 2 1
subtype1 1 1 1 0 4 2 0 4 1 1 0
subtype2 0 1 1 1 9 5 4 3 2 0 0
subtype3 0 1 0 0 3 4 1 1 2 1 1

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.282 (Chi-square test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 15 34
subtype1 3 2 10
subtype2 1 10 15
subtype3 2 3 9

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.444 (Chi-square test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 27 19 8
subtype1 8 4 2
subtype2 14 10 2
subtype3 5 5 4

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.213 (Chi-square test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 42 1 8
subtype1 11 0 3
subtype2 23 0 2
subtype3 8 1 3

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.261 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 8 48
subtype1 4 11
subtype2 2 24
subtype3 2 13

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.109 (ANOVA), Q value = 1

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 33 35.6 (16.1)
subtype1 9 44.7 (23.3)
subtype2 14 33.9 (11.4)
subtype3 10 29.7 (11.1)

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #2: 'METHLYATION CNMF'

Table S10.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 17 27 13
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.99 (logrank test), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 54 13 0.0 - 30.7 (1.1)
subtype1 17 7 0.3 - 29.0 (4.9)
subtype2 25 3 0.1 - 20.1 (0.1)
subtype3 12 3 0.0 - 30.7 (0.9)

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.00364 (ANOVA), Q value = 0.21

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 57 62.1 (11.8)
subtype1 17 69.5 (9.7)
subtype2 27 57.7 (10.5)
subtype3 13 61.5 (12.9)

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.103 (Chi-square test), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 16 11 5 8 5 2 1
subtype1 1 2 0 0 1 4 0 1 3 2 1
subtype2 0 1 1 1 11 5 3 3 2 0 0
subtype3 0 0 1 0 4 2 2 4 0 0 0

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.0283 (Chi-square test), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 15 35
subtype1 5 2 9
subtype2 1 9 17
subtype3 0 4 9

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.0932 (Chi-square test), Q value = 1

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 27 20 8
subtype1 4 7 5
subtype2 17 8 2
subtype3 6 5 1

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.136 (Chi-square test), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 43 1 8
subtype1 8 1 4
subtype2 24 0 2
subtype3 11 0 2

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.292 (Fisher's exact test), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 8 49
subtype1 4 13
subtype2 2 25
subtype3 2 11

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.325 (ANOVA), Q value = 1

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 33 35.6 (16.1)
subtype1 10 32.4 (19.4)
subtype2 14 33.4 (13.3)
subtype3 9 42.5 (15.9)

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S19.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 9 21 5 16
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.589 (logrank test), Q value = 1

Table S20.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 49 13 0.0 - 30.7 (0.8)
subtype1 8 1 0.1 - 20.8 (0.2)
subtype2 20 4 0.1 - 20.1 (0.1)
subtype3 5 0 0.0 - 20.1 (0.1)
subtype4 16 8 0.3 - 30.7 (6.0)

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.00019 (ANOVA), Q value = 0.011

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 51 62.7 (12.2)
subtype1 9 57.9 (9.9)
subtype2 21 58.7 (11.8)
subtype3 5 55.2 (7.6)
subtype4 16 73.1 (8.7)

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.4 (Chi-square test), Q value = 1

Table S22.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 16 9 5 6 5 1 1
subtype1 0 1 0 0 6 0 0 1 1 0 0
subtype2 0 0 2 1 8 3 4 2 1 0 0
subtype3 0 0 0 0 1 1 1 1 1 0 0
subtype4 1 2 0 0 1 5 0 2 2 1 1

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0963 (Chi-square test), Q value = 1

Table S23.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 13 31
subtype1 1 2 6
subtype2 0 6 15
subtype3 0 1 4
subtype4 5 4 6

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0278 (Chi-square test), Q value = 1

Table S24.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 27 16 7
subtype1 8 0 1
subtype2 14 6 1
subtype3 1 3 1
subtype4 4 7 4

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.127 (Chi-square test), Q value = 1

Table S25.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 39 1 6
subtype1 8 0 0
subtype2 19 0 2
subtype3 5 0 0
subtype4 7 1 4

Figure S22.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.0963 (Fisher's exact test), Q value = 1

Table S26.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 7 44
subtype1 1 8
subtype2 1 20
subtype3 0 5
subtype4 5 11

Figure S23.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.368 (ANOVA), Q value = 1

Table S27.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 32 35.6 (16.4)
subtype1 5 38.5 (16.0)
subtype2 13 37.5 (16.9)
subtype3 4 43.8 (22.9)
subtype4 10 28.4 (12.6)

Figure S24.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S28.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 17 3 31
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.0845 (logrank test), Q value = 1

Table S29.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 49 13 0.0 - 30.7 (0.8)
subtype1 17 8 0.3 - 30.7 (4.9)
subtype2 3 1 0.1 - 1.0 (0.1)
subtype3 29 4 0.0 - 20.8 (0.1)

Figure S25.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 6.59e-05 (ANOVA), Q value = 0.0041

Table S30.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 51 62.7 (12.2)
subtype1 17 72.4 (8.9)
subtype2 3 52.3 (3.5)
subtype3 31 58.4 (11.1)

Figure S26.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.169 (Chi-square test), Q value = 1

Table S31.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 16 9 5 6 5 1 1
subtype1 1 2 0 0 1 5 0 2 3 1 1
subtype2 0 0 0 0 3 0 0 0 0 0 0
subtype3 0 1 2 1 12 4 5 4 2 0 0

Figure S27.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.071 (Chi-square test), Q value = 1

Table S32.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 13 31
subtype1 5 4 7
subtype2 0 1 2
subtype3 1 8 22

Figure S28.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0252 (Chi-square test), Q value = 1

Table S33.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 27 16 7
subtype1 4 7 5
subtype2 3 0 0
subtype3 20 9 2

Figure S29.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.0857 (Chi-square test), Q value = 1

Table S34.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 39 1 6
subtype1 8 1 4
subtype2 3 0 0
subtype3 28 0 2

Figure S30.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.121 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 7 44
subtype1 5 12
subtype2 0 3
subtype3 2 29

Figure S31.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.498 (ANOVA), Q value = 1

Table S36.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 32 35.6 (16.4)
subtype1 11 32.7 (18.4)
subtype2 2 37.5 (31.8)
subtype3 19 37.1 (14.4)

Figure S32.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S37.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 24 11 17
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.818 (logrank test), Q value = 1

Table S38.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 49 13 0.0 - 30.7 (1.0)
subtype1 22 3 0.0 - 20.1 (0.1)
subtype2 10 2 0.1 - 20.8 (0.2)
subtype3 17 8 0.3 - 30.7 (4.9)

Figure S33.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.000124 (ANOVA), Q value = 0.0076

Table S39.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 52 62.9 (12.0)
subtype1 24 58.7 (10.8)
subtype2 11 57.7 (10.6)
subtype3 17 72.4 (8.9)

Figure S34.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.214 (Chi-square test), Q value = 1

Table S40.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 15 10 5 7 5 1 1
subtype1 0 1 2 1 10 4 3 2 1 0 0
subtype2 0 0 0 0 4 1 2 3 1 0 0
subtype3 1 2 0 0 1 5 0 2 3 1 1

Figure S35.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.0423 (Chi-square test), Q value = 1

Table S41.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 14 31
subtype1 1 8 15
subtype2 0 2 9
subtype3 5 4 7

Figure S36.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.0554 (Chi-square test), Q value = 1

Table S42.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 26 18 7
subtype1 16 7 1
subtype2 6 4 1
subtype3 4 7 5

Figure S37.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.0648 (Chi-square test), Q value = 1

Table S43.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 40 1 6
subtype1 21 0 2
subtype2 11 0 0
subtype3 8 1 4

Figure S38.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.0768 (Fisher's exact test), Q value = 1

Table S44.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 7 45
subtype1 2 22
subtype2 0 11
subtype3 5 12

Figure S39.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.347 (ANOVA), Q value = 1

Table S45.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 31 36.3 (16.2)
subtype1 15 35.9 (15.9)
subtype2 5 45.5 (9.4)
subtype3 11 32.7 (18.4)

Figure S40.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S46.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3
Number of samples 1 17 34
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.699 (logrank test), Q value = 1

Table S47.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 48 12 0.0 - 30.7 (1.1)
subtype2 17 8 0.3 - 30.7 (4.9)
subtype3 31 4 0.0 - 20.8 (0.1)

Figure S41.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 1.77e-05 (t-test), Q value = 0.0011

Table S48.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 51 63.1 (12.0)
subtype2 17 72.4 (8.9)
subtype3 34 58.4 (10.7)

Figure S42.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.039 (Chi-square test), Q value = 1

Table S49.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 14 10 5 7 5 1 1
subtype2 1 2 0 0 1 5 0 2 3 1 1
subtype3 0 1 2 1 13 5 5 5 2 0 0

Figure S43.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.0152 (Chi-square test), Q value = 0.86

Table S50.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 14 30
subtype2 5 4 7
subtype3 1 10 23

Figure S44.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.0155 (Chi-square test), Q value = 0.86

Table S51.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 25 18 7
subtype2 4 7 5
subtype3 21 11 2

Figure S45.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 0.0178 (Chi-square test), Q value = 0.94

Table S52.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 39 1 6
subtype2 8 1 4
subtype3 31 0 2

Figure S46.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.0338 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 7 44
subtype2 5 12
subtype3 2 32

Figure S47.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.498 (t-test), Q value = 1

Table S54.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 30 35.5 (15.8)
subtype2 11 32.7 (18.4)
subtype3 19 37.1 (14.4)

Figure S48.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S55.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 10 5 21 16
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.954 (logrank test), Q value = 1

Table S56.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 49 13 0.0 - 30.7 (1.0)
subtype1 9 1 0.1 - 20.8 (0.1)
subtype2 5 1 0.1 - 20.1 (3.7)
subtype3 19 3 0.0 - 20.1 (0.1)
subtype4 16 8 0.3 - 30.7 (6.0)

Figure S49.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.000265 (ANOVA), Q value = 0.016

Table S57.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 52 62.9 (12.0)
subtype1 10 57.7 (11.1)
subtype2 5 55.8 (4.3)
subtype3 21 59.5 (11.3)
subtype4 16 72.9 (8.8)

Figure S50.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.201 (Chi-square test), Q value = 1

Table S58.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 15 10 5 7 5 1 1
subtype1 0 0 0 0 3 1 2 4 0 0 0
subtype2 0 1 0 0 2 2 0 0 0 0 0
subtype3 0 0 2 1 9 3 3 1 2 0 0
subtype4 1 2 0 0 1 4 0 2 3 1 1

Figure S51.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0617 (Chi-square test), Q value = 1

Table S59.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 14 31
subtype1 0 2 8
subtype2 2 1 2
subtype3 0 7 14
subtype4 4 4 7

Figure S52.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0916 (Chi-square test), Q value = 1

Table S60.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 26 18 7
subtype1 5 5 0
subtype2 4 1 0
subtype3 13 6 2
subtype4 4 6 5

Figure S53.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.173 (Chi-square test), Q value = 1

Table S61.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 40 1 6
subtype1 10 0 0
subtype2 3 0 0
subtype3 19 0 2
subtype4 8 1 4

Figure S54.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.0572 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 7 45
subtype1 0 10
subtype2 1 4
subtype3 1 20
subtype4 5 11

Figure S55.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.739 (ANOVA), Q value = 1

Table S63.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 31 36.3 (16.2)
subtype1 5 39.7 (6.8)
subtype2 3 43.3 (15.3)
subtype3 12 36.4 (17.7)
subtype4 11 32.7 (18.4)

Figure S56.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S64.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 1 17 34
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.699 (logrank test), Q value = 1

Table S65.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 48 12 0.0 - 30.7 (1.1)
subtype2 17 8 0.3 - 30.7 (4.9)
subtype3 31 4 0.0 - 20.8 (0.1)

Figure S57.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 1.77e-05 (t-test), Q value = 0.0011

Table S66.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 51 63.1 (12.0)
subtype2 17 72.4 (8.9)
subtype3 34 58.4 (10.7)

Figure S58.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.039 (Chi-square test), Q value = 1

Table S67.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IA STAGE IB STAGE II STAGE IIA STAGE IIB STAGE III STAGE IIIA STAGE IIIB STAGE IIIC STAGE IV
ALL 1 3 2 1 14 10 5 7 5 1 1
subtype2 1 2 0 0 1 5 0 2 3 1 1
subtype3 0 1 2 1 13 5 5 5 2 0 0

Figure S59.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0152 (Chi-square test), Q value = 0.86

Table S68.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 6 14 30
subtype2 5 4 7
subtype3 1 10 23

Figure S60.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0155 (Chi-square test), Q value = 0.86

Table S69.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1 N2+N3
ALL 25 18 7
subtype2 4 7 5
subtype3 21 11 2

Figure S61.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.0178 (Chi-square test), Q value = 0.94

Table S70.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1A MX
ALL 39 1 6
subtype2 8 1 4
subtype3 31 0 2

Figure S62.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.0338 (Fisher's exact test), Q value = 1

Table S71.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 7 44
subtype2 5 12
subtype3 2 32

Figure S63.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.498 (t-test), Q value = 1

Table S72.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 30 35.5 (15.8)
subtype2 11 32.7 (18.4)
subtype3 19 37.1 (14.4)

Figure S64.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'NUMBERPACKYEARSSMOKED'

Methods & Data
Input
  • Cluster data file = ESCA-TP.mergedcluster.txt

  • Clinical data file = ESCA-TP.merged_data.txt

  • Number of patients = 57

  • Number of clustering approaches = 8

  • Number of selected clinical features = 8

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between two tumor subtypes using 't.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[6] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[7] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[8] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)