Correlation between aggregated molecular cancer subtypes and selected clinical features
Glioblastoma Multiforme (Primary solid tumor)
16 April 2014  |  analyses__2014_04_16
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1CV4GBW
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 6 clinical features across 581 patients, 2 significant findings detected with P value < 0.05 and Q value < 0.25.

  • CNMF clustering analysis on array-based mRNA expression data identified 4 subtypes that correlate to 'HISTOLOGICAL.TYPE'.

  • Consensus hierarchical clustering analysis on array-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on array-based miR expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on array-based miR expression data identified 3 subtypes that do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'AGE'.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on RPPA data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 6 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 2 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER KARNOFSKY
PERFORMANCE
SCORE
HISTOLOGICAL
TYPE
RADIATIONS
RADIATION
REGIMENINDICATION
Statistical Tests logrank test ANOVA Fisher's exact test ANOVA Chi-square test Fisher's exact test
mRNA CNMF subtypes 0.0511
(1.00)
0.013
(0.729)
0.399
(1.00)
0.807
(1.00)
0.0024
(0.142)
0.0689
(1.00)
mRNA cHierClus subtypes 0.117
(1.00)
0.0808
(1.00)
0.611
(1.00)
0.75
(1.00)
0.0746
(1.00)
0.182
(1.00)
miR CNMF subtypes 0.00499
(0.284)
0.0653
(1.00)
0.65
(1.00)
0.794
(1.00)
0.401
(1.00)
0.417
(1.00)
miR cHierClus subtypes 0.378
(1.00)
0.0602
(1.00)
0.0275
(1.00)
0.981
(1.00)
0.0401
(1.00)
0.909
(1.00)
Copy Number Ratio CNMF subtypes 0.00445
(0.258)
4.14e-08
(2.48e-06)
0.271
(1.00)
0.376
(1.00)
0.155
(1.00)
0.0987
(1.00)
METHLYATION CNMF 0.379
(1.00)
0.058
(1.00)
0.517
(1.00)
0.646
(1.00)
0.571
(1.00)
0.721
(1.00)
RPPA CNMF subtypes 0.415
(1.00)
0.205
(1.00)
0.23
(1.00)
0.386
(1.00)
0.439
(1.00)
0.301
(1.00)
RPPA cHierClus subtypes 0.407
(1.00)
0.516
(1.00)
0.612
(1.00)
0.639
(1.00)
0.559
(1.00)
0.568
(1.00)
RNAseq CNMF subtypes 0.16
(1.00)
0.0368
(1.00)
0.0673
(1.00)
0.576
(1.00)
0.491
(1.00)
0.833
(1.00)
RNAseq cHierClus subtypes 0.71
(1.00)
0.0255
(1.00)
0.0877
(1.00)
0.32
(1.00)
0.115
(1.00)
0.887
(1.00)
Clustering Approach #1: 'mRNA CNMF subtypes'

Table S1.  Description of clustering approach #1: 'mRNA CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 154 97 156 118
'mRNA CNMF subtypes' versus 'Time to Death'

P value = 0.0511 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 525 441 0.1 - 127.6 (10.4)
subtype1 154 138 0.1 - 127.6 (9.2)
subtype2 97 77 0.2 - 108.8 (10.6)
subtype3 156 127 0.1 - 92.7 (11.4)
subtype4 118 99 0.2 - 91.8 (9.8)

Figure S1.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA CNMF subtypes' versus 'AGE'

P value = 0.013 (ANOVA), Q value = 0.73

Table S3.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 525 57.7 (14.6)
subtype1 154 58.4 (12.4)
subtype2 97 54.2 (17.4)
subtype3 156 60.0 (13.3)
subtype4 118 56.5 (15.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'mRNA CNMF subtypes' versus 'GENDER'

P value = 0.399 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 205 320
subtype1 59 95
subtype2 41 56
subtype3 66 90
subtype4 39 79

Figure S3.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.807 (ANOVA), Q value = 1

Table S5.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 392 77.2 (14.4)
subtype1 114 78.0 (15.5)
subtype2 75 76.5 (11.0)
subtype3 119 76.5 (15.2)
subtype4 84 77.9 (14.5)

Figure S4.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'mRNA CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0024 (Chi-square test), Q value = 0.14

Table S6.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 6 20 499
subtype1 1 8 145
subtype2 0 7 90
subtype3 0 4 152
subtype4 5 1 112

Figure S5.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'mRNA CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.0689 (Fisher's exact test), Q value = 1

Table S7.  Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 360 165
subtype1 106 48
subtype2 68 29
subtype3 116 40
subtype4 70 48

Figure S6.  Get High-res Image Clustering Approach #1: 'mRNA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #2: 'mRNA cHierClus subtypes'

Table S8.  Description of clustering approach #2: 'mRNA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 119 177 229
'mRNA cHierClus subtypes' versus 'Time to Death'

P value = 0.117 (logrank test), Q value = 1

Table S9.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 525 441 0.1 - 127.6 (10.4)
subtype1 119 98 0.1 - 92.7 (11.3)
subtype2 177 147 0.2 - 127.6 (9.9)
subtype3 229 196 0.1 - 91.0 (10.0)

Figure S7.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'mRNA cHierClus subtypes' versus 'AGE'

P value = 0.0808 (ANOVA), Q value = 1

Table S10.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 525 57.7 (14.6)
subtype1 119 59.9 (13.8)
subtype2 177 56.0 (16.2)
subtype3 229 57.8 (13.5)

Figure S8.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'mRNA cHierClus subtypes' versus 'GENDER'

P value = 0.611 (Fisher's exact test), Q value = 1

Table S11.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 205 320
subtype1 49 70
subtype2 64 113
subtype3 92 137

Figure S9.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'mRNA cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.75 (ANOVA), Q value = 1

Table S12.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 392 77.2 (14.4)
subtype1 92 76.6 (15.9)
subtype2 129 78.0 (11.9)
subtype3 171 77.0 (15.2)

Figure S10.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'mRNA cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0746 (Chi-square test), Q value = 1

Table S13.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 6 20 499
subtype1 0 5 114
subtype2 5 4 168
subtype3 1 11 217

Figure S11.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'mRNA cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.182 (Fisher's exact test), Q value = 1

Table S14.  Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 360 165
subtype1 85 34
subtype2 112 65
subtype3 163 66

Figure S12.  Get High-res Image Clustering Approach #2: 'mRNA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #3: 'miR CNMF subtypes'

Table S15.  Description of clustering approach #3: 'miR CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 165 182 90 124
'miR CNMF subtypes' versus 'Time to Death'

P value = 0.00499 (logrank test), Q value = 0.28

Table S16.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 561 457 0.1 - 127.6 (10.0)
subtype1 165 139 0.1 - 91.0 (10.3)
subtype2 182 145 0.1 - 127.6 (10.4)
subtype3 90 72 0.1 - 53.8 (8.4)
subtype4 124 101 0.1 - 92.7 (11.6)

Figure S13.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'miR CNMF subtypes' versus 'AGE'

P value = 0.0653 (ANOVA), Q value = 1

Table S17.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 561 57.9 (14.3)
subtype1 165 59.8 (11.6)
subtype2 182 55.7 (16.6)
subtype3 90 58.5 (14.6)
subtype4 124 58.1 (13.6)

Figure S14.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #2: 'AGE'

'miR CNMF subtypes' versus 'GENDER'

P value = 0.65 (Fisher's exact test), Q value = 1

Table S18.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 218 343
subtype1 63 102
subtype2 76 106
subtype3 36 54
subtype4 43 81

Figure S15.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'miR CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.794 (ANOVA), Q value = 1

Table S19.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 424 77.5 (14.5)
subtype1 127 76.6 (15.3)
subtype2 131 77.3 (14.6)
subtype3 73 78.2 (13.6)
subtype4 93 78.4 (14.2)

Figure S16.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'miR CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.401 (Chi-square test), Q value = 1

Table S20.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 9 20 532
subtype1 2 4 159
subtype2 1 8 173
subtype3 3 5 82
subtype4 3 3 118

Figure S17.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'miR CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.417 (Fisher's exact test), Q value = 1

Table S21.  Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 389 172
subtype1 118 47
subtype2 131 51
subtype3 57 33
subtype4 83 41

Figure S18.  Get High-res Image Clustering Approach #3: 'miR CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #4: 'miR cHierClus subtypes'

Table S22.  Description of clustering approach #4: 'miR cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 178 188 195
'miR cHierClus subtypes' versus 'Time to Death'

P value = 0.378 (logrank test), Q value = 1

Table S23.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 561 457 0.1 - 127.6 (10.0)
subtype1 178 145 0.1 - 127.6 (10.4)
subtype2 188 149 0.1 - 108.8 (9.4)
subtype3 195 163 0.1 - 92.7 (10.3)

Figure S19.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'miR cHierClus subtypes' versus 'AGE'

P value = 0.0602 (ANOVA), Q value = 1

Table S24.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 561 57.9 (14.3)
subtype1 178 58.6 (13.5)
subtype2 188 55.9 (16.4)
subtype3 195 59.2 (12.7)

Figure S20.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'miR cHierClus subtypes' versus 'GENDER'

P value = 0.0275 (Fisher's exact test), Q value = 1

Table S25.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 218 343
subtype1 83 95
subtype2 70 118
subtype3 65 130

Figure S21.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'miR cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.981 (ANOVA), Q value = 1

Table S26.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 424 77.5 (14.5)
subtype1 133 77.5 (15.5)
subtype2 143 77.6 (14.2)
subtype3 148 77.3 (14.0)

Figure S22.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'miR cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0401 (Chi-square test), Q value = 1

Table S27.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 9 20 532
subtype1 0 9 169
subtype2 5 9 174
subtype3 4 2 189

Figure S23.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'miR cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.909 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 389 172
subtype1 125 53
subtype2 131 57
subtype3 133 62

Figure S24.  Get High-res Image Clustering Approach #4: 'miR cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #5: 'Copy Number Ratio CNMF subtypes'

Table S29.  Description of clustering approach #5: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 158 208 194
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.00445 (logrank test), Q value = 0.26

Table S30.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 560 458 0.1 - 127.6 (9.9)
subtype1 158 134 0.1 - 92.7 (8.9)
subtype2 208 169 0.1 - 77.7 (10.8)
subtype3 194 155 0.2 - 127.6 (10.6)

Figure S25.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 4.14e-08 (ANOVA), Q value = 2.5e-06

Table S31.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 560 57.9 (14.5)
subtype1 158 61.1 (13.7)
subtype2 208 59.9 (10.8)
subtype3 194 53.1 (17.1)

Figure S26.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.271 (Fisher's exact test), Q value = 1

Table S32.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 220 340
subtype1 70 88
subtype2 75 133
subtype3 75 119

Figure S27.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.376 (ANOVA), Q value = 1

Table S33.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 416 77.5 (14.7)
subtype1 112 76.0 (14.7)
subtype2 163 77.6 (15.4)
subtype3 141 78.6 (13.9)

Figure S28.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'Copy Number Ratio CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.155 (Chi-square test), Q value = 1

Table S34.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 17 18 525
subtype1 3 4 151
subtype2 4 5 199
subtype3 10 9 175

Figure S29.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'Copy Number Ratio CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.0987 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 382 178
subtype1 97 61
subtype2 147 61
subtype3 138 56

Figure S30.  Get High-res Image Clustering Approach #5: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #6: 'METHLYATION CNMF'

Table S36.  Description of clustering approach #6: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 36 45 33
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.379 (logrank test), Q value = 1

Table S37.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 114 69 0.2 - 58.8 (7.4)
subtype1 36 23 0.8 - 58.8 (5.4)
subtype2 45 30 0.2 - 47.9 (8.0)
subtype3 33 16 1.2 - 50.5 (7.8)

Figure S31.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.058 (ANOVA), Q value = 1

Table S38.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 114 60.9 (12.2)
subtype1 36 60.4 (13.7)
subtype2 45 63.9 (8.6)
subtype3 33 57.3 (13.9)

Figure S32.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.517 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 49 65
subtype1 14 22
subtype2 18 27
subtype3 17 16

Figure S33.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.646 (ANOVA), Q value = 1

Table S40.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 83 76.7 (15.3)
subtype1 24 77.5 (17.8)
subtype2 33 74.8 (15.6)
subtype3 26 78.5 (12.6)

Figure S34.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'METHLYATION CNMF' versus 'HISTOLOGICAL.TYPE'

P value = 0.571 (Chi-square test), Q value = 1

Table S41.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 8 1 105
subtype1 4 0 32
subtype2 2 1 42
subtype3 2 0 31

Figure S35.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'METHLYATION CNMF' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.721 (Fisher's exact test), Q value = 1

Table S42.  Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 78 36
subtype1 25 11
subtype2 29 16
subtype3 24 9

Figure S36.  Get High-res Image Clustering Approach #6: 'METHLYATION CNMF' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #7: 'RPPA CNMF subtypes'

Table S43.  Description of clustering approach #7: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 57 61 44 49
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 0.415 (logrank test), Q value = 1

Table S44.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 211 157 0.1 - 108.8 (8.2)
subtype1 57 46 0.1 - 53.2 (8.7)
subtype2 61 44 0.2 - 108.8 (7.7)
subtype3 44 31 0.1 - 46.2 (9.3)
subtype4 49 36 0.2 - 47.9 (6.2)

Figure S37.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'AGE'

P value = 0.205 (ANOVA), Q value = 1

Table S45.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 211 59.9 (14.1)
subtype1 57 59.2 (13.6)
subtype2 61 57.2 (16.8)
subtype3 44 61.5 (12.2)
subtype4 49 62.5 (12.0)

Figure S38.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RPPA CNMF subtypes' versus 'GENDER'

P value = 0.23 (Fisher's exact test), Q value = 1

Table S46.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 85 126
subtype1 17 40
subtype2 26 35
subtype3 18 26
subtype4 24 25

Figure S39.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.386 (ANOVA), Q value = 1

Table S47.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 169 75.7 (15.3)
subtype1 46 75.0 (15.9)
subtype2 51 76.7 (16.5)
subtype3 32 78.8 (11.3)
subtype4 40 72.8 (15.8)

Figure S40.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RPPA CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.439 (Chi-square test), Q value = 1

Table S48.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 1 3 207
subtype1 0 2 55
subtype2 1 0 60
subtype3 0 0 44
subtype4 0 1 48

Figure S41.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RPPA CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.301 (Fisher's exact test), Q value = 1

Table S49.  Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 156 55
subtype1 42 15
subtype2 44 17
subtype3 37 7
subtype4 33 16

Figure S42.  Get High-res Image Clustering Approach #7: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #8: 'RPPA cHierClus subtypes'

Table S50.  Description of clustering approach #8: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 65 35 111
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 0.407 (logrank test), Q value = 1

Table S51.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 211 157 0.1 - 108.8 (8.2)
subtype1 65 48 0.1 - 47.9 (9.2)
subtype2 35 29 0.3 - 53.2 (7.9)
subtype3 111 80 0.2 - 108.8 (6.7)

Figure S43.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'AGE'

P value = 0.516 (ANOVA), Q value = 1

Table S52.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 211 59.9 (14.1)
subtype1 65 61.5 (12.1)
subtype2 35 58.4 (13.2)
subtype3 111 59.4 (15.4)

Figure S44.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RPPA cHierClus subtypes' versus 'GENDER'

P value = 0.612 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 85 126
subtype1 25 40
subtype2 12 23
subtype3 48 63

Figure S45.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RPPA cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.639 (ANOVA), Q value = 1

Table S54.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 169 75.7 (15.3)
subtype1 50 77.2 (14.1)
subtype2 26 73.8 (17.7)
subtype3 93 75.4 (15.3)

Figure S46.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RPPA cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.559 (Chi-square test), Q value = 1

Table S55.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 1 3 207
subtype1 1 1 63
subtype2 0 1 34
subtype3 0 1 110

Figure S47.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RPPA cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.568 (Fisher's exact test), Q value = 1

Table S56.  Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 156 55
subtype1 51 14
subtype2 26 9
subtype3 79 32

Figure S48.  Get High-res Image Clustering Approach #8: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #9: 'RNAseq CNMF subtypes'

Table S57.  Description of clustering approach #9: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 47 70 35
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.16 (logrank test), Q value = 1

Table S58.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 152 114 0.2 - 54.0 (9.1)
subtype1 47 33 0.2 - 54.0 (8.9)
subtype2 70 52 0.9 - 47.9 (9.8)
subtype3 35 29 0.2 - 31.3 (6.0)

Figure S49.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.0368 (ANOVA), Q value = 1

Table S59.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 152 59.7 (13.5)
subtype1 47 55.6 (16.6)
subtype2 70 62.0 (10.6)
subtype3 35 60.9 (13.3)

Figure S50.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.0673 (Fisher's exact test), Q value = 1

Table S60.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 53 99
subtype1 14 33
subtype2 31 39
subtype3 8 27

Figure S51.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.576 (ANOVA), Q value = 1

Table S61.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 113 75.8 (14.4)
subtype1 36 74.2 (15.2)
subtype2 51 75.7 (14.2)
subtype3 26 78.1 (13.9)

Figure S52.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.491 (Chi-square test), Q value = 1

Table S62.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 1 1 150
subtype1 1 0 46
subtype2 0 1 69
subtype3 0 0 35

Figure S53.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RNAseq CNMF subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.833 (Fisher's exact test), Q value = 1

Table S63.  Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 102 50
subtype1 32 15
subtype2 48 22
subtype3 22 13

Figure S54.  Get High-res Image Clustering Approach #9: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Clustering Approach #10: 'RNAseq cHierClus subtypes'

Table S64.  Description of clustering approach #10: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 69 22 61
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.71 (logrank test), Q value = 1

Table S65.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 152 114 0.2 - 54.0 (9.1)
subtype1 69 48 0.4 - 40.4 (8.8)
subtype2 22 19 1.1 - 47.9 (10.2)
subtype3 61 47 0.2 - 54.0 (9.2)

Figure S55.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.0255 (ANOVA), Q value = 1

Table S66.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 152 59.7 (13.5)
subtype1 69 62.1 (11.5)
subtype2 22 62.3 (10.5)
subtype3 61 56.1 (15.8)

Figure S56.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.0877 (Fisher's exact test), Q value = 1

Table S67.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 53 99
subtype1 29 40
subtype2 9 13
subtype3 15 46

Figure S57.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.32 (ANOVA), Q value = 1

Table S68.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 113 75.8 (14.4)
subtype1 51 74.7 (14.6)
subtype2 18 72.8 (15.3)
subtype3 44 78.2 (13.7)

Figure S58.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.115 (Chi-square test), Q value = 1

Table S69.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients GLIOBLASTOMA MULTIFORME (GBM) TREATED PRIMARY GBM UNTREATED PRIMARY (DE NOVO) GBM
ALL 1 1 150
subtype1 0 0 69
subtype2 0 1 21
subtype3 1 0 60

Figure S59.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RNAseq cHierClus subtypes' versus 'RADIATIONS.RADIATION.REGIMENINDICATION'

P value = 0.887 (Fisher's exact test), Q value = 1

Table S70.  Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

nPatients NO YES
ALL 102 50
subtype1 46 23
subtype2 14 8
subtype3 42 19

Figure S60.  Get High-res Image Clustering Approach #10: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'RADIATIONS.RADIATION.REGIMENINDICATION'

Methods & Data
Input
  • Cluster data file = GBM-TP.mergedcluster.txt

  • Clinical data file = GBM-TP.merged_data.txt

  • Number of patients = 581

  • Number of clustering approaches = 10

  • Number of selected clinical features = 6

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

ANOVA analysis

For continuous numerical clinical features, one-way analysis of variance (Howell 2002) was applied to compare the clinical values between tumor subtypes using 'anova' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Chi-square test

For multi-class clinical features (nominal or ordinal), Chi-square tests (Greenwood and Nikulin 1996) were used to estimate the P values using the 'chisq.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Howell, D, Statistical Methods for Psychology. (5th ed.), Duxbury Press:324-5 (2002)
[5] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[6] Greenwood and Nikulin, A guide to chi-squared testing, Wiley, New York. ISBN 047155779X (1996)
[7] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)