Correlation between gene mutation status and selected clinical features
Kidney Renal Clear Cell Carcinoma (Primary solid tumor)
16 April 2014  |  analyses__2014_04_16
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between gene mutation status and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C11Z4317
Overview
Introduction

This pipeline computes the correlation between significantly recurrent gene mutations and selected clinical features.

Summary

Testing the association between mutation status of 9 genes and 8 clinical features across 417 patients, 4 significant findings detected with Q value < 0.25.

  • BAP1 mutation correlated to 'Time to Death',  'NEOPLASM.DISEASESTAGE',  'PATHOLOGY.T.STAGE', and 'GENDER'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between mutation status of 9 genes and 8 clinical features. Shown in the table are P values (Q values). Thresholded by Q value < 0.25, 4 significant findings detected.

Clinical
Features
Time
to
Death
AGE NEOPLASM
DISEASESTAGE
PATHOLOGY
T
STAGE
PATHOLOGY
N
STAGE
PATHOLOGY
M
STAGE
GENDER KARNOFSKY
PERFORMANCE
SCORE
nMutated (%) nWild-Type logrank test t-test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test t-test
BAP1 42 (10%) 375 0.00101
(0.0635)
0.384
(1.00)
0.000133
(0.00878)
0.000223
(0.0145)
0.681
(1.00)
0.0126
(0.766)
0.000954
(0.061)
VHL 218 (52%) 199 0.896
(1.00)
0.343
(1.00)
0.0857
(1.00)
0.161
(1.00)
0.768
(1.00)
0.112
(1.00)
0.918
(1.00)
0.272
(1.00)
SETD2 48 (12%) 369 0.321
(1.00)
0.15
(1.00)
0.121
(1.00)
0.094
(1.00)
0.367
(1.00)
0.207
(1.00)
0.148
(1.00)
PBRM1 137 (33%) 280 0.401
(1.00)
0.393
(1.00)
0.966
(1.00)
0.219
(1.00)
0.515
(1.00)
1
(1.00)
0.229
(1.00)
0.387
(1.00)
KDM5C 27 (6%) 390 0.0536
(1.00)
0.0682
(1.00)
0.9
(1.00)
0.877
(1.00)
1
(1.00)
1
(1.00)
0.00612
(0.379)
PTEN 18 (4%) 399 0.363
(1.00)
0.654
(1.00)
0.0534
(1.00)
0.251
(1.00)
0.11
(1.00)
0.329
(1.00)
0.129
(1.00)
0.357
(1.00)
TSPAN19 5 (1%) 412 0.616
(1.00)
0.278
(1.00)
0.476
(1.00)
0.7
(1.00)
1
(1.00)
0.585
(1.00)
0.661
(1.00)
TCEB1 3 (1%) 414 0.278
(1.00)
0.246
(1.00)
0.586
(1.00)
0.383
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
NEFH 6 (1%) 411 0.812
(1.00)
0.536
(1.00)
0.0638
(1.00)
0.184
(1.00)
1
(1.00)
0.248
(1.00)
0.67
(1.00)
'BAP1 MUTATION STATUS' versus 'Time to Death'

P value = 0.00101 (logrank test), Q value = 0.064

Table S1.  Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 416 142 0.1 - 120.6 (37.2)
BAP1 MUTATED 42 24 0.1 - 93.3 (28.3)
BAP1 WILD-TYPE 374 118 0.4 - 120.6 (38.0)

Figure S1.  Get High-res Image Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #1: 'Time to Death'

'BAP1 MUTATION STATUS' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.000133 (Fisher's exact test), Q value = 0.0088

Table S2.  Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 197 40 113 67
BAP1 MUTATED 7 7 16 12
BAP1 WILD-TYPE 190 33 97 55

Figure S2.  Get High-res Image Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'BAP1 MUTATION STATUS' versus 'PATHOLOGY.T.STAGE'

P value = 0.000223 (Fisher's exact test), Q value = 0.014

Table S3.  Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 202 49 160 6
BAP1 MUTATED 8 10 24 0
BAP1 WILD-TYPE 194 39 136 6

Figure S3.  Get High-res Image Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'BAP1 MUTATION STATUS' versus 'GENDER'

P value = 0.000954 (Fisher's exact test), Q value = 0.061

Table S4.  Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 146 271
BAP1 MUTATED 25 17
BAP1 WILD-TYPE 121 254

Figure S4.  Get High-res Image Gene #1: 'BAP1 MUTATION STATUS' versus Clinical Feature #7: 'GENDER'

Methods & Data
Input
  • Mutation data file = transformed.cor.cli.txt

  • Clinical data file = KIRC-TP.merged_data.txt

  • Number of patients = 417

  • Number of significantly mutated genes = 9

  • Number of selected clinical features = 8

  • Exclude genes that fewer than K tumors have mutations, K = 3

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Student's t-test analysis

For continuous numerical clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the clinical values between tumors with and without gene mutations using 't.test' function in R

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[2] Lehmann and Romano, Testing Statistical Hypotheses (3E ed.), New York: Springer. ISBN 0387988645 (2005)
[3] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[4] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)