Correlation between aggregated molecular cancer subtypes and selected clinical features
Adrenocortical Carcinoma (Primary solid tumor)
15 July 2014  |  analyses__2014_07_15
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1W094M8
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 7 clinical features across 82 patients, 12 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 5 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'Time to Death' and 'PATHOLOGY.N.STAGE'.

  • 5 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'Time to Death' and 'GENDER'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death' and 'NEOPLASM.DISEASESTAGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'NEOPLASM.DISEASESTAGE'.

  • 5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'NEOPLASM.DISEASESTAGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'NEOPLASM.DISEASESTAGE'.

  • 6 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'Time to Death' and 'NEOPLASM.DISEASESTAGE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 7 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 12 significant findings detected.

Clinical
Features
Time
to
Death
AGE NEOPLASM
DISEASESTAGE
PATHOLOGY
T
STAGE
PATHOLOGY
N
STAGE
GENDER ETHNICITY
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.0019
(0.0893)
0.298
(1.00)
0.102
(1.00)
0.698
(1.00)
0.00154
(0.0739)
0.686
(1.00)
0.683
(1.00)
METHLYATION CNMF 0.00134
(0.0672)
0.337
(1.00)
0.184
(1.00)
0.112
(1.00)
0.115
(1.00)
0.00116
(0.0592)
0.797
(1.00)
RNAseq CNMF subtypes 0.00144
(0.0706)
0.938
(1.00)
0.0262
(1.00)
0.157
(1.00)
0.0719
(1.00)
0.322
(1.00)
0.937
(1.00)
RNAseq cHierClus subtypes 0.00103
(0.0548)
0.656
(1.00)
0.00503
(0.226)
0.0357
(1.00)
0.0609
(1.00)
0.473
(1.00)
0.281
(1.00)
MIRSEQ CNMF 0.0147
(0.617)
0.186
(1.00)
0.00054
(0.0302)
0.00595
(0.262)
0.0399
(1.00)
0.123
(1.00)
0.3
(1.00)
MIRSEQ CHIERARCHICAL 0.0839
(1.00)
0.275
(1.00)
0.00074
(0.04)
0.0913
(1.00)
0.361
(1.00)
0.323
(1.00)
0.661
(1.00)
MIRseq Mature CNMF subtypes 0.00879
(0.378)
0.256
(1.00)
0.00109
(0.0567)
0.0329
(1.00)
0.0616
(1.00)
0.125
(1.00)
0.499
(1.00)
MIRseq Mature cHierClus subtypes 0.00219
(0.101)
0.373
(1.00)
0.00064
(0.0352)
0.0349
(1.00)
0.355
(1.00)
0.952
(1.00)
0.452
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 27 21 14 9 9
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.0019 (logrank test), Q value = 0.089

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 79 27 4.1 - 153.6 (31.2)
subtype1 26 14 4.9 - 128.1 (33.3)
subtype2 21 1 6.9 - 153.6 (31.2)
subtype3 14 7 10.2 - 64.1 (20.8)
subtype4 9 4 4.1 - 63.2 (27.3)
subtype5 9 1 12.0 - 91.5 (46.8)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.298 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 80 46.9 (16.3)
subtype1 27 47.1 (18.2)
subtype2 21 51.0 (15.1)
subtype3 14 41.1 (16.6)
subtype4 9 51.9 (11.7)
subtype5 9 40.2 (14.8)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.102 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 34 17 17
subtype1 4 8 7 7
subtype2 2 12 6 1
subtype3 0 4 3 7
subtype4 1 4 0 1
subtype5 1 6 1 1

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.698 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 39 11 18
subtype1 4 9 5 8
subtype2 2 13 3 3
subtype3 0 7 2 5
subtype4 1 4 0 1
subtype5 1 6 1 1

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.00154 (Fisher's exact test), Q value = 0.074

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 67 10
subtype1 24 2
subtype2 20 1
subtype3 7 7
subtype4 7 0
subtype5 9 0

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.686 (Fisher's exact test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 52 28
subtype1 19 8
subtype2 13 8
subtype3 10 4
subtype4 4 5
subtype5 6 3

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.683 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 27
subtype1 3 11
subtype2 1 7
subtype3 4 6
subtype4 0 1
subtype5 0 2

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S9.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4 5
Number of samples 18 11 21 17 11
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.00134 (logrank test), Q value = 0.067

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 78 26 4.1 - 153.6 (32.0)
subtype1 18 12 4.1 - 120.3 (20.1)
subtype2 11 3 12.0 - 128.1 (50.1)
subtype3 21 7 6.8 - 153.6 (31.2)
subtype4 17 3 6.9 - 121.2 (23.8)
subtype5 11 1 12.6 - 91.5 (22.2)

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.337 (Kruskal-Wallis (anova)), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 78 46.4 (16.1)
subtype1 18 40.3 (20.0)
subtype2 11 53.2 (14.8)
subtype3 21 47.2 (14.5)
subtype4 17 49.3 (12.7)
subtype5 11 43.9 (16.4)

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.184 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 33 16 16
subtype1 1 7 6 4
subtype2 1 3 4 3
subtype3 1 7 3 6
subtype4 3 7 3 3
subtype5 2 9 0 0

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.112 (Fisher's exact test), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 38 9 18
subtype1 1 9 3 5
subtype2 1 5 4 1
subtype3 1 8 1 7
subtype4 3 7 1 5
subtype5 2 9 0 0

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.115 (Fisher's exact test), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 64 10
subtype1 14 4
subtype2 9 2
subtype3 14 4
subtype4 16 0
subtype5 11 0

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.00116 (Fisher's exact test), Q value = 0.059

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 49 29
subtype1 13 5
subtype2 9 2
subtype3 7 14
subtype4 9 8
subtype5 11 0

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'GENDER'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.797 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 28
subtype1 3 6
subtype2 2 6
subtype3 1 7
subtype4 2 5
subtype5 0 4

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S17.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 24 14 17 22
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.00144 (logrank test), Q value = 0.071

Table S18.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 77 25 4.1 - 153.6 (32.7)
subtype1 24 14 4.1 - 128.1 (20.4)
subtype2 14 5 6.8 - 153.6 (33.8)
subtype3 17 5 12.0 - 106.5 (50.1)
subtype4 22 1 6.9 - 121.2 (28.4)

Figure S15.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.938 (Kruskal-Wallis (anova)), Q value = 1

Table S19.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 77 46.7 (15.9)
subtype1 24 46.7 (18.2)
subtype2 14 47.3 (14.9)
subtype3 17 45.0 (13.1)
subtype4 22 47.8 (16.8)

Figure S16.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0262 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 33 16 15
subtype1 3 8 8 5
subtype2 0 6 2 6
subtype3 1 5 5 3
subtype4 4 14 1 1

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.157 (Fisher's exact test), Q value = 1

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 38 8 18
subtype1 3 10 4 7
subtype2 0 8 2 4
subtype3 1 6 1 6
subtype4 4 14 1 1

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0719 (Fisher's exact test), Q value = 1

Table S22.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 64 9
subtype1 21 3
subtype2 10 4
subtype3 12 2
subtype4 21 0

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.322 (Fisher's exact test), Q value = 1

Table S23.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 48 29
subtype1 16 8
subtype2 11 3
subtype3 8 9
subtype4 13 9

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'GENDER'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.937 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 7 28
subtype1 2 11
subtype2 2 7
subtype3 2 5
subtype4 1 5

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S25.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 23 23 7 24
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.00103 (logrank test), Q value = 0.055

Table S26.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 77 25 4.1 - 153.6 (32.7)
subtype1 23 14 4.1 - 128.1 (33.8)
subtype2 23 7 6.8 - 153.6 (39.6)
subtype3 7 3 10.1 - 87.9 (19.0)
subtype4 24 1 6.9 - 121.2 (27.5)

Figure S22.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.656 (Kruskal-Wallis (anova)), Q value = 1

Table S27.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 77 46.7 (15.9)
subtype1 23 47.3 (19.2)
subtype2 23 45.4 (15.0)
subtype3 7 41.3 (14.9)
subtype4 24 49.1 (14.1)

Figure S23.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00503 (Fisher's exact test), Q value = 0.23

Table S28.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 33 16 15
subtype1 2 9 7 5
subtype2 0 8 5 8
subtype3 2 1 1 2
subtype4 4 15 3 0

Figure S24.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0357 (Fisher's exact test), Q value = 1

Table S29.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 38 8 18
subtype1 2 12 4 5
subtype2 0 10 2 9
subtype3 2 1 1 2
subtype4 4 15 1 2

Figure S25.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0609 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 64 9
subtype1 19 4
subtype2 16 5
subtype3 6 0
subtype4 23 0

Figure S26.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.473 (Fisher's exact test), Q value = 1

Table S31.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 48 29
subtype1 17 6
subtype2 13 10
subtype3 5 2
subtype4 13 11

Figure S27.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.281 (Fisher's exact test), Q value = 1

Table S32.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 7 28
subtype1 2 10
subtype2 3 8
subtype3 2 3
subtype4 0 7

Figure S28.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S33.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 38 15 25
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.0147 (logrank test), Q value = 0.62

Table S34.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 78 26 4.1 - 153.6 (32.0)
subtype1 38 15 4.1 - 120.3 (29.7)
subtype2 15 8 8.3 - 153.6 (33.8)
subtype3 25 3 6.9 - 121.2 (46.8)

Figure S29.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.186 (Kruskal-Wallis (anova)), Q value = 1

Table S35.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 78 46.4 (16.1)
subtype1 38 43.0 (15.8)
subtype2 15 50.9 (17.4)
subtype3 25 49.0 (15.1)

Figure S30.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00054 (Fisher's exact test), Q value = 0.03

Table S36.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 33 16 16
subtype1 3 12 12 9
subtype2 1 4 2 7
subtype3 4 17 2 0

Figure S31.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.00595 (Fisher's exact test), Q value = 0.26

Table S37.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 38 9 18
subtype1 3 16 4 13
subtype2 1 5 3 5
subtype3 4 17 2 0

Figure S32.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.0399 (Fisher's exact test), Q value = 1

Table S38.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 64 10
subtype1 29 7
subtype2 11 3
subtype3 24 0

Figure S33.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.123 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 49 29
subtype1 25 13
subtype2 12 3
subtype3 12 13

Figure S34.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'GENDER'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.3 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 28
subtype1 5 18
subtype2 3 5
subtype3 0 5

Figure S35.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S41.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5
Number of samples 17 25 12 20 4
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.0839 (logrank test), Q value = 1

Table S42.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 78 26 4.1 - 153.6 (32.0)
subtype1 17 7 4.1 - 93.4 (41.3)
subtype2 25 7 6.9 - 153.6 (33.8)
subtype3 12 0 10.1 - 106.5 (28.4)
subtype4 20 10 4.9 - 128.1 (25.4)
subtype5 4 2 23.3 - 53.0 (38.4)

Figure S36.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.275 (Kruskal-Wallis (anova)), Q value = 1

Table S43.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 78 46.4 (16.1)
subtype1 17 46.3 (14.3)
subtype2 25 47.9 (15.2)
subtype3 12 40.5 (15.9)
subtype4 20 45.4 (18.8)
subtype5 4 60.8 (9.8)

Figure S37.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00074 (Fisher's exact test), Q value = 0.04

Table S44.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 33 16 16
subtype1 0 5 7 4
subtype2 1 17 0 6
subtype3 4 3 2 1
subtype4 3 6 7 3
subtype5 0 2 0 2

Figure S38.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.0913 (Fisher's exact test), Q value = 1

Table S45.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 38 9 18
subtype1 0 6 4 6
subtype2 1 17 1 5
subtype3 4 3 1 2
subtype4 3 9 3 4
subtype5 0 3 0 1

Figure S39.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.361 (Fisher's exact test), Q value = 1

Table S46.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 64 10
subtype1 13 3
subtype2 23 2
subtype3 10 0
subtype4 15 4
subtype5 3 1

Figure S40.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.323 (Fisher's exact test), Q value = 1

Table S47.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 49 29
subtype1 7 10
subtype2 16 9
subtype3 9 3
subtype4 14 6
subtype5 3 1

Figure S41.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.661 (Fisher's exact test), Q value = 1

Table S48.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 28
subtype1 3 4
subtype2 2 6
subtype3 1 6
subtype4 2 9
subtype5 0 3

Figure S42.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S49.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 39 17 22
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.00879 (logrank test), Q value = 0.38

Table S50.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 78 26 4.1 - 153.6 (32.0)
subtype1 39 15 4.1 - 120.3 (29.0)
subtype2 17 10 12.6 - 153.6 (38.9)
subtype3 22 1 6.9 - 121.2 (30.2)

Figure S43.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.256 (Kruskal-Wallis (anova)), Q value = 1

Table S51.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 78 46.4 (16.1)
subtype1 39 43.4 (15.8)
subtype2 17 50.7 (17.6)
subtype3 22 48.5 (14.8)

Figure S44.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00109 (Fisher's exact test), Q value = 0.057

Table S52.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 33 16 16
subtype1 3 12 13 9
subtype2 1 7 1 7
subtype3 4 14 2 0

Figure S45.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0329 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 38 9 18
subtype1 3 16 5 13
subtype2 1 8 2 5
subtype3 4 14 2 0

Figure S46.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0616 (Fisher's exact test), Q value = 1

Table S54.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 64 10
subtype1 30 7
subtype2 13 3
subtype3 21 0

Figure S47.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.125 (Fisher's exact test), Q value = 1

Table S55.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 49 29
subtype1 26 13
subtype2 13 4
subtype3 10 12

Figure S48.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.499 (Fisher's exact test), Q value = 1

Table S56.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 28
subtype1 5 18
subtype2 3 6
subtype3 0 4

Figure S49.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'ETHNICITY'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S57.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 9 23 9 18 9 10
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.00219 (logrank test), Q value = 0.1

Table S58.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 78 26 4.1 - 153.6 (32.0)
subtype1 9 6 4.1 - 64.1 (30.3)
subtype2 23 5 6.9 - 153.6 (38.9)
subtype3 9 0 17.4 - 106.5 (46.5)
subtype4 18 9 4.9 - 120.3 (20.4)
subtype5 9 5 12.6 - 128.1 (37.1)
subtype6 10 1 10.1 - 93.4 (30.2)

Figure S50.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.373 (Kruskal-Wallis (anova)), Q value = 1

Table S59.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 78 46.4 (16.1)
subtype1 9 44.4 (15.4)
subtype2 23 47.9 (15.8)
subtype3 9 41.8 (12.0)
subtype4 18 44.5 (19.4)
subtype5 9 56.9 (10.0)
subtype6 10 43.2 (17.5)

Figure S51.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.00064 (Fisher's exact test), Q value = 0.035

Table S60.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 8 33 16 16
subtype1 0 3 4 2
subtype2 1 17 0 4
subtype3 1 2 3 2
subtype4 1 6 7 3
subtype5 2 2 0 5
subtype6 3 3 2 0

Figure S52.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0349 (Fisher's exact test), Q value = 1

Table S61.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3 T4
ALL 8 38 9 18
subtype1 0 4 2 3
subtype2 1 17 1 3
subtype3 1 2 1 4
subtype4 1 9 3 4
subtype5 2 3 0 4
subtype6 3 3 2 0

Figure S53.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.355 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 64 10
subtype1 7 2
subtype2 21 2
subtype3 8 0
subtype4 13 4
subtype5 7 2
subtype6 8 0

Figure S54.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.952 (Fisher's exact test), Q value = 1

Table S63.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

nPatients FEMALE MALE
ALL 49 29
subtype1 6 3
subtype2 15 8
subtype3 5 4
subtype4 12 6
subtype5 6 3
subtype6 5 5

Figure S55.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.452 (Fisher's exact test), Q value = 1

Table S64.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 8 28
subtype1 3 3
subtype2 2 5
subtype3 1 4
subtype4 2 7
subtype5 0 6
subtype6 0 3

Figure S56.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = ACC-TP.mergedcluster.txt

  • Clinical data file = ACC-TP.merged_data.txt

  • Number of patients = 82

  • Number of clustering approaches = 8

  • Number of selected clinical features = 7

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)