Correlation between aggregated molecular cancer subtypes and selected clinical features
Kidney Chromophobe (Primary solid tumor)
15 July 2014  |  analyses__2014_07_15
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1TD9W35
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 11 clinical features across 66 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 7 subtypes that do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 7 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 5 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 7 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 11 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 100
(1.00)
100
(1.00)
100
(1.00)
100
(1.00)
100
(1.00)
100
(1.00)
100
(1.00)
100
(1.00)
AGE Kruskal-Wallis (anova) 0.828
(1.00)
0.499
(1.00)
0.345
(1.00)
0.566
(1.00)
0.00741
(0.622)
0.355
(1.00)
0.353
(1.00)
0.27
(1.00)
NEOPLASM DISEASESTAGE Fisher's exact test 0.587
(1.00)
0.0312
(1.00)
0.087
(1.00)
0.118
(1.00)
0.132
(1.00)
0.619
(1.00)
0.0523
(1.00)
0.032
(1.00)
PATHOLOGY T STAGE Fisher's exact test 0.498
(1.00)
0.0172
(1.00)
0.0499
(1.00)
0.0787
(1.00)
0.129
(1.00)
0.643
(1.00)
0.0417
(1.00)
0.0524
(1.00)
PATHOLOGY N STAGE Fisher's exact test 0.565
(1.00)
0.383
(1.00)
0.114
(1.00)
0.165
(1.00)
0.722
(1.00)
0.263
(1.00)
0.656
(1.00)
0.287
(1.00)
PATHOLOGY M STAGE Fisher's exact test 0.924
(1.00)
0.251
(1.00)
0.151
(1.00)
0.0698
(1.00)
0.156
(1.00)
0.0286
(1.00)
0.257
(1.00)
0.206
(1.00)
GENDER Fisher's exact test 0.655
(1.00)
0.754
(1.00)
0.366
(1.00)
0.104
(1.00)
0.495
(1.00)
0.583
(1.00)
0.226
(1.00)
0.515
(1.00)
KARNOFSKY PERFORMANCE SCORE Kruskal-Wallis (anova) 0.12
(1.00)
0.615
(1.00)
0.244
(1.00)
0.164
(1.00)
0.0528
(1.00)
0.164
(1.00)
0.097
(1.00)
0.116
(1.00)
NUMBERPACKYEARSSMOKED Kruskal-Wallis (anova) 0.3
(1.00)
0.118
(1.00)
0.118
(1.00)
0.268
(1.00)
RACE Fisher's exact test 0.122
(1.00)
0.805
(1.00)
0.458
(1.00)
0.502
(1.00)
0.105
(1.00)
0.232
(1.00)
0.648
(1.00)
0.162
(1.00)
ETHNICITY Fisher's exact test 0.712
(1.00)
0.667
(1.00)
0.141
(1.00)
0.0926
(1.00)
0.665
(1.00)
0.271
(1.00)
0.147
(1.00)
0.741
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 5 47 14
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 4 0 1125.0 - 2820.0 (2059.0)
subtype2 41 2 18.0 - 4622.0 (1986.0)
subtype3 14 0 76.0 - 4169.0 (2078.0)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.828 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 5 51.6 (11.7)
subtype2 47 52.1 (14.7)
subtype3 14 49.6 (14.5)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.587 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 1 2 2 0
subtype2 13 18 10 6
subtype3 7 5 2 0

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.498 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 1 2 2
subtype2 13 18 16
subtype3 7 5 2

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.565 (Fisher's exact test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 2 0
subtype2 30 5
subtype3 8 0

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.924 (Fisher's exact test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 3 0 1
subtype2 23 2 7
subtype3 8 0 1

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.655 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 3 2
subtype2 18 29
subtype3 6 8

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.12 (Kruskal-Wallis (anova)), Q value = 1

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 1 90.0 (NA)
subtype2 7 85.7 (9.8)
subtype3 3 96.7 (5.8)

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.122 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 1 1 3
subtype2 1 2 42
subtype3 0 1 13

Figure S9.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'RACE'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.712 (Fisher's exact test), Q value = 1

Table S11.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 0 3
subtype2 2 20
subtype3 2 9

Figure S10.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S12.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 18 35 13
'METHLYATION CNMF' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 16 0 714.0 - 4169.0 (2104.0)
subtype2 31 2 76.0 - 4622.0 (1986.0)
subtype3 12 0 18.0 - 2991.0 (1684.0)

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.499 (Kruskal-Wallis (anova)), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 18 49.7 (13.7)
subtype2 35 50.9 (14.0)
subtype3 13 55.7 (16.3)

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0312 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 8 7 3 0
subtype2 6 17 8 4
subtype3 7 1 3 2

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.0172 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 8 7 3
subtype2 6 17 12
subtype3 7 1 5

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.383 (Fisher's exact test), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 12 0
subtype2 23 4
subtype3 5 1

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.251 (Fisher's exact test), Q value = 1

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 12 0 2
subtype2 17 2 3
subtype3 5 0 4

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.754 (Fisher's exact test), Q value = 1

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 8 10
subtype2 15 20
subtype3 4 9

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

'METHLYATION CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.615 (Kruskal-Wallis (anova)), Q value = 1

Table S20.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 3 93.3 (5.8)
subtype2 3 90.0 (10.0)
subtype3 5 86.0 (11.4)

Figure S18.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'METHLYATION CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.3 (Kruskal-Wallis (anova)), Q value = 1

Table S21.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 11 25.1 (21.9)
subtype1 3 12.0 (13.1)
subtype2 6 32.7 (26.8)
subtype3 2 22.0 (2.8)

Figure S19.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

'METHLYATION CNMF' versus 'RACE'

P value = 0.805 (Fisher's exact test), Q value = 1

Table S22.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 0 1 17
subtype2 2 3 28
subtype3 0 0 13

Figure S20.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'RACE'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.667 (Fisher's exact test), Q value = 1

Table S23.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 1 11
subtype2 1 12
subtype3 2 9

Figure S21.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'ETHNICITY'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S24.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 19 22 15 10
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S25.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 18 1 1125.0 - 4169.0 (2371.5)
subtype2 20 0 76.0 - 4622.0 (1937.0)
subtype3 12 1 637.0 - 3474.0 (2044.0)
subtype4 9 0 18.0 - 2991.0 (953.0)

Figure S22.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.345 (Kruskal-Wallis (anova)), Q value = 1

Table S26.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 19 47.7 (12.9)
subtype2 22 51.8 (15.1)
subtype3 15 51.6 (14.3)
subtype4 10 58.0 (14.6)

Figure S23.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.087 (Fisher's exact test), Q value = 1

Table S27.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 7 6 5 1
subtype2 8 11 2 1
subtype3 1 7 5 2
subtype4 5 1 2 2

Figure S24.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0499 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 7 6 6
subtype2 8 11 3
subtype3 1 7 7
subtype4 5 1 4

Figure S25.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.114 (Fisher's exact test), Q value = 1

Table S29.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 12 1
subtype2 15 0
subtype3 10 3
subtype4 3 1

Figure S26.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.151 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 13 0 2
subtype2 11 1 2
subtype3 7 1 1
subtype4 3 0 4

Figure S27.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.366 (Fisher's exact test), Q value = 1

Table S31.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 9 10
subtype2 11 11
subtype3 5 10
subtype4 2 8

Figure S28.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.244 (Kruskal-Wallis (anova)), Q value = 1

Table S32.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 3 93.3 (5.8)
subtype2 3 93.3 (11.5)
subtype3 1 90.0 (NA)
subtype4 4 82.5 (9.6)

Figure S29.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq CNMF subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.118 (Kruskal-Wallis (anova)), Q value = 1

Table S33.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 11 25.1 (21.9)
subtype1 3 14.3 (11.2)
subtype2 4 15.8 (16.5)
subtype3 3 50.0 (24.1)
subtype4 1 20.0 (NA)

Figure S30.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.458 (Fisher's exact test), Q value = 1

Table S34.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 1 0 18
subtype2 0 2 18
subtype3 1 2 12
subtype4 0 0 10

Figure S31.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'RACE'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.141 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 0 10
subtype2 4 10
subtype3 0 5
subtype4 0 7

Figure S32.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S36.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 19 16 7 6 10 4 4
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S37.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 18 1 1125.0 - 4169.0 (2293.5)
subtype2 15 0 76.0 - 4622.0 (1977.0)
subtype3 5 0 18.0 - 2582.0 (1897.0)
subtype4 6 0 714.0 - 3322.0 (1684.0)
subtype5 7 1 1366.0 - 3474.0 (2064.0)
subtype6 4 0 637.0 - 2674.0 (1998.5)
subtype7 4 0 400.0 - 2304.0 (830.5)

Figure S33.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.566 (Kruskal-Wallis (anova)), Q value = 1

Table S38.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 19 46.8 (13.3)
subtype2 16 53.5 (16.0)
subtype3 7 53.1 (15.9)
subtype4 6 60.0 (11.8)
subtype5 10 53.6 (12.7)
subtype6 4 46.5 (15.1)
subtype7 4 50.0 (17.1)

Figure S34.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.118 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 7 7 4 1
subtype2 7 7 1 1
subtype3 1 3 1 2
subtype4 1 2 3 0
subtype5 1 3 4 2
subtype6 0 3 1 0
subtype7 4 0 0 0

Figure S35.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0787 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 7 7 5
subtype2 7 7 2
subtype3 1 3 3
subtype4 1 2 3
subtype5 1 3 6
subtype6 0 3 1
subtype7 4 0 0

Figure S36.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.165 (Fisher's exact test), Q value = 1

Table S41.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 12 1
subtype2 11 0
subtype3 3 1
subtype4 5 0
subtype5 6 3
subtype6 3 0
subtype7 0 0

Figure S37.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.0698 (Fisher's exact test), Q value = 1

Table S42.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 13 0 2
subtype2 7 1 1
subtype3 4 0 1
subtype4 4 0 1
subtype5 4 1 1
subtype6 2 0 0
subtype7 0 0 3

Figure S38.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.104 (Fisher's exact test), Q value = 1

Table S43.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 9 10
subtype2 10 6
subtype3 1 6
subtype4 0 6
subtype5 4 6
subtype6 1 3
subtype7 2 2

Figure S39.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'RNAseq cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.164 (Kruskal-Wallis (anova)), Q value = 1

Table S44.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 3 93.3 (5.8)
subtype2 2 90.0 (14.1)
subtype3 1 100.0 (NA)
subtype4 1 90.0 (NA)
subtype5 1 90.0 (NA)
subtype7 3 80.0 (10.0)

Figure S40.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'RNAseq cHierClus subtypes' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.118 (Kruskal-Wallis (anova)), Q value = 1

Table S45.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 11 25.1 (21.9)
subtype1 3 14.3 (11.2)
subtype2 4 15.8 (16.5)
subtype5 3 50.0 (24.1)
subtype7 1 20.0 (NA)

Figure S41.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.502 (Fisher's exact test), Q value = 1

Table S46.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 1 0 18
subtype2 0 1 14
subtype3 0 0 6
subtype4 0 1 5
subtype5 1 1 8
subtype6 0 1 3
subtype7 0 0 4

Figure S42.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'RACE'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.0926 (Fisher's exact test), Q value = 1

Table S47.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 0 10
subtype2 2 9
subtype3 2 1
subtype4 0 3
subtype5 0 3
subtype6 0 2
subtype7 0 4

Figure S43.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S48.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 20 24 22
'MIRSEQ CNMF' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S49.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 15 0 18.0 - 4622.0 (1815.0)
subtype2 23 1 108.0 - 4311.0 (2670.0)
subtype3 21 1 341.0 - 3474.0 (1971.0)

Figure S44.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.00741 (Kruskal-Wallis (anova)), Q value = 0.62

Table S50.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 20 58.2 (15.9)
subtype2 24 52.2 (13.0)
subtype3 22 44.6 (11.1)

Figure S45.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.132 (Fisher's exact test), Q value = 1

Table S51.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 6 4 7 3
subtype2 9 9 3 3
subtype3 6 12 4 0

Figure S46.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.129 (Fisher's exact test), Q value = 1

Table S52.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 6 4 10
subtype2 9 9 6
subtype3 6 12 4

Figure S47.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.722 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 10 2
subtype2 14 2
subtype3 16 1

Figure S48.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.156 (Fisher's exact test), Q value = 1

Table S54.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 8 1 5
subtype2 15 1 1
subtype3 11 0 3

Figure S49.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.495 (Fisher's exact test), Q value = 1

Table S55.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 6 14
subtype2 11 13
subtype3 10 12

Figure S50.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CNMF' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.0528 (Kruskal-Wallis (anova)), Q value = 1

Table S56.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 5 82.0 (8.4)
subtype2 2 95.0 (7.1)
subtype3 4 95.0 (5.8)

Figure S51.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CNMF' versus 'NUMBERPACKYEARSSMOKED'

P value = 0.268 (Kruskal-Wallis (anova)), Q value = 1

Table S57.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

nPatients Mean (Std.Dev)
ALL 11 25.1 (21.9)
subtype1 3 31.7 (14.6)
subtype2 4 11.0 (11.3)
subtype3 4 34.2 (30.2)

Figure S52.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #9: 'NUMBERPACKYEARSSMOKED'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.105 (Fisher's exact test), Q value = 1

Table S58.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 0 0 20
subtype2 2 1 21
subtype3 0 3 17

Figure S53.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #10: 'RACE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.665 (Fisher's exact test), Q value = 1

Table S59.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 1 11
subtype2 1 12
subtype3 2 9

Figure S54.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #11: 'ETHNICITY'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S60.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 18 11 12 6 5 5 9
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S61.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 16 0 1125.0 - 3745.0 (2518.5)
subtype2 11 1 76.0 - 4311.0 (1986.0)
subtype3 11 0 1364.0 - 2619.0 (1997.0)
subtype4 6 0 712.0 - 3322.0 (1164.0)
subtype5 4 0 341.0 - 2991.0 (1858.0)
subtype6 4 1 1945.0 - 4622.0 (2722.5)
subtype7 7 0 18.0 - 2304.0 (876.0)

Figure S55.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.355 (Kruskal-Wallis (anova)), Q value = 1

Table S62.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 18 49.2 (12.4)
subtype2 11 58.5 (14.3)
subtype3 12 47.8 (12.6)
subtype4 6 47.3 (15.0)
subtype5 5 51.4 (19.9)
subtype6 5 46.0 (13.5)
subtype7 9 58.4 (15.6)

Figure S56.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.619 (Fisher's exact test), Q value = 1

Table S63.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 7 5 5 1
subtype2 3 5 1 2
subtype3 2 8 2 0
subtype4 3 2 1 0
subtype5 1 2 2 0
subtype6 1 2 1 1
subtype7 4 1 2 2

Figure S57.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.643 (Fisher's exact test), Q value = 1

Table S64.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 7 5 6
subtype2 3 5 3
subtype3 2 8 2
subtype4 3 2 1
subtype5 1 2 2
subtype6 1 2 2
subtype7 4 1 4

Figure S58.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.263 (Fisher's exact test), Q value = 1

Table S65.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 11 1
subtype2 6 1
subtype3 10 0
subtype4 4 0
subtype5 3 0
subtype6 3 2
subtype7 3 1

Figure S59.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 0.0286 (Fisher's exact test), Q value = 1

Table S66.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 13 0 1
subtype2 6 1 0
subtype3 9 0 2
subtype4 1 0 1
subtype5 2 0 1
subtype6 1 1 1
subtype7 2 0 3

Figure S60.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.583 (Fisher's exact test), Q value = 1

Table S67.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 10 8
subtype2 5 6
subtype3 4 8
subtype4 2 4
subtype5 1 4
subtype6 3 2
subtype7 2 7

Figure S61.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.164 (Kruskal-Wallis (anova)), Q value = 1

Table S68.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 2 95.0 (7.1)
subtype3 3 93.3 (5.8)
subtype4 1 90.0 (NA)
subtype5 1 100.0 (NA)
subtype6 1 80.0 (NA)
subtype7 3 80.0 (10.0)

Figure S62.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.232 (Fisher's exact test), Q value = 1

Table S69.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 1 0 17
subtype2 1 0 10
subtype3 0 3 9
subtype4 0 1 4
subtype5 0 0 4
subtype6 0 0 5
subtype7 0 0 9

Figure S63.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'RACE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.271 (Fisher's exact test), Q value = 1

Table S70.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 1 8
subtype2 0 5
subtype3 1 5
subtype4 0 2
subtype5 2 2
subtype6 0 3
subtype7 0 7

Figure S64.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'ETHNICITY'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S71.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 10 16 16 10 14
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S72.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 8 0 108.0 - 2949.0 (2161.0)
subtype2 16 0 76.0 - 4311.0 (1684.0)
subtype3 14 1 1364.0 - 4169.0 (2565.5)
subtype4 10 0 341.0 - 2619.0 (2010.5)
subtype5 11 1 18.0 - 4622.0 (1971.0)

Figure S65.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.353 (Kruskal-Wallis (anova)), Q value = 1

Table S73.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 10 50.2 (10.7)
subtype2 16 52.1 (15.9)
subtype3 16 49.1 (15.7)
subtype4 10 47.3 (12.1)
subtype5 14 57.6 (14.3)

Figure S66.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0523 (Fisher's exact test), Q value = 1

Table S74.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 5 0 3 2
subtype2 6 8 2 0
subtype3 4 9 1 2
subtype4 2 5 3 0
subtype5 4 3 5 2

Figure S67.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0417 (Fisher's exact test), Q value = 1

Table S75.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 5 0 5
subtype2 6 8 2
subtype3 4 9 3
subtype4 2 5 3
subtype5 4 3 7

Figure S68.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.656 (Fisher's exact test), Q value = 1

Table S76.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 6 1
subtype2 9 0
subtype3 11 2
subtype4 6 0
subtype5 8 2

Figure S69.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.257 (Fisher's exact test), Q value = 1

Table S77.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 7 1 0
subtype2 5 0 3
subtype3 12 1 1
subtype4 5 0 2
subtype5 5 0 3

Figure S70.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.226 (Fisher's exact test), Q value = 1

Table S78.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 7 3
subtype2 7 9
subtype3 6 10
subtype4 4 6
subtype5 3 11

Figure S71.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.097 (Kruskal-Wallis (anova)), Q value = 1

Table S79.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype2 3 86.7 (5.8)
subtype3 2 95.0 (7.1)
subtype4 3 96.7 (5.8)
subtype5 3 80.0 (10.0)

Figure S72.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.648 (Fisher's exact test), Q value = 1

Table S80.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 1 0 9
subtype2 0 2 13
subtype3 1 1 14
subtype4 0 1 8
subtype5 0 0 14

Figure S73.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'RACE'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.147 (Fisher's exact test), Q value = 1

Table S81.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 1 3
subtype2 0 11
subtype3 0 6
subtype4 2 4
subtype5 1 8

Figure S74.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'ETHNICITY'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S82.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 14 8 13 5 9 9 8
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S83.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Year
ALL 59 2 18.0 - 4622.0 (1986.0)
subtype1 12 0 1125.0 - 3010.0 (2293.5)
subtype2 8 0 76.0 - 4311.0 (1729.0)
subtype3 12 0 1364.0 - 3474.0 (2010.5)
subtype4 5 0 714.0 - 3322.0 (1553.0)
subtype5 8 1 1665.0 - 4169.0 (2565.5)
subtype6 7 1 341.0 - 4622.0 (1971.0)
subtype7 7 0 18.0 - 2304.0 (876.0)

Figure S75.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.27 (Kruskal-Wallis (anova)), Q value = 1

Table S84.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 66 51.5 (14.3)
subtype1 14 49.0 (7.9)
subtype2 8 61.2 (14.3)
subtype3 13 45.8 (12.1)
subtype4 5 49.8 (15.3)
subtype5 9 48.9 (18.2)
subtype6 9 53.8 (17.0)
subtype7 8 56.9 (16.0)

Figure S76.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.032 (Fisher's exact test), Q value = 1

Table S85.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE II STAGE III STAGE IV
ALL 21 25 14 6
subtype1 4 5 4 1
subtype2 2 5 0 1
subtype3 2 9 2 0
subtype4 3 1 1 0
subtype5 5 1 1 2
subtype6 1 4 4 0
subtype7 4 0 2 2

Figure S77.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0524 (Fisher's exact test), Q value = 1

Table S86.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1 T2 T3+T4
ALL 21 25 20
subtype1 4 5 5
subtype2 2 5 1
subtype3 2 9 2
subtype4 3 1 1
subtype5 5 1 3
subtype6 1 4 4
subtype7 4 0 4

Figure S78.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.287 (Fisher's exact test), Q value = 1

Table S87.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 40 5
subtype1 10 1
subtype2 4 0
subtype3 10 0
subtype4 4 0
subtype5 4 2
subtype6 6 1
subtype7 2 1

Figure S79.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.206 (Fisher's exact test), Q value = 1

Table S88.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 34 2 9
subtype1 10 0 1
subtype2 3 1 0
subtype3 9 0 2
subtype4 1 0 1
subtype5 6 1 1
subtype6 3 0 1
subtype7 2 0 3

Figure S80.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.515 (Fisher's exact test), Q value = 1

Table S89.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 27 39
subtype1 9 5
subtype2 4 4
subtype3 5 8
subtype4 1 4
subtype5 3 6
subtype6 3 6
subtype7 2 6

Figure S81.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'KARNOFSKY.PERFORMANCE.SCORE'

P value = 0.116 (Kruskal-Wallis (anova)), Q value = 1

Table S90.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

nPatients Mean (Std.Dev)
ALL 11 89.1 (9.4)
subtype1 1 90.0 (NA)
subtype3 3 96.7 (5.8)
subtype4 1 90.0 (NA)
subtype5 2 95.0 (7.1)
subtype6 1 80.0 (NA)
subtype7 3 80.0 (10.0)

Figure S82.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'KARNOFSKY.PERFORMANCE.SCORE'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.162 (Fisher's exact test), Q value = 1

Table S91.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 4 58
subtype1 1 0 13
subtype2 0 0 8
subtype3 0 3 9
subtype4 0 1 4
subtype5 1 0 8
subtype6 0 0 8
subtype7 0 0 8

Figure S83.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'RACE'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.741 (Fisher's exact test), Q value = 1

Table S92.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 4 32
subtype1 1 5
subtype2 0 5
subtype3 2 4
subtype4 0 2
subtype5 0 5
subtype6 1 5
subtype7 0 6

Figure S84.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = KICH-TP.mergedcluster.txt

  • Clinical data file = KICH-TP.merged_data.txt

  • Number of patients = 66

  • Number of clustering approaches = 8

  • Number of selected clinical features = 11

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)