Correlation between aggregated molecular cancer subtypes and selected clinical features
Mesothelioma (Primary solid tumor)
15 July 2014  |  analyses__2014_07_15
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1BV7FD6
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 7 clinical features across 21 patients, one significant finding detected with P value < 0.05 and Q value < 0.25.

  • 2 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 2 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 2 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that correlate to 'Time to Death'.

  • 2 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 2 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 2 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 7 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, one significant finding detected.

Clinical
Features
Time
to
Death
AGE NEOPLASM
DISEASESTAGE
PATHOLOGY
T
STAGE
PATHOLOGY
N
STAGE
PATHOLOGY
M
STAGE
GENDER
Statistical Tests logrank test Wilcoxon-test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.142
(1.00)
0.165
(1.00)
0.938
(1.00)
0.0318
(1.00)
1
(1.00)
0.44
(1.00)
1
(1.00)
METHLYATION CNMF 0.419
(1.00)
0.672
(1.00)
0.0701
(1.00)
0.387
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
RNAseq CNMF subtypes 0.109
(1.00)
0.274
(1.00)
0.0305
(1.00)
0.0805
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
RNAseq cHierClus subtypes 0.00209
(0.117)
0.125
(1.00)
0.71
(1.00)
0.352
(1.00)
0.0746
(1.00)
1
(1.00)
0.67
(1.00)
MIRSEQ CNMF 0.332
(1.00)
0.0711
(1.00)
0.286
(1.00)
0.315
(1.00)
0.58
(1.00)
0.759
(1.00)
0.308
(1.00)
MIRSEQ CHIERARCHICAL 0.312
(1.00)
0.585
(1.00)
0.785
(1.00)
0.743
(1.00)
0.678
(1.00)
1
(1.00)
0.134
(1.00)
MIRseq Mature CNMF subtypes 0.48
(1.00)
0.247
(1.00)
1
(1.00)
0.619
(1.00)
0.282
(1.00)
0.57
(1.00)
0.282
(1.00)
MIRseq Mature cHierClus subtypes 0.73
(1.00)
0.881
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
1
(1.00)
0.107
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2
Number of samples 9 12
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.142 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 21 16 0.2 - 91.7 (17.3)
subtype1 9 7 1.9 - 23.9 (17.3)
subtype2 12 9 0.2 - 91.7 (20.0)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.165 (Wilcoxon-test), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 21 63.6 (7.5)
subtype1 9 60.9 (5.5)
subtype2 12 65.7 (8.3)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.938 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IB STAGE II STAGE III STAGE IV
ALL 1 1 6 11 2
subtype1 0 0 2 6 1
subtype2 1 1 4 5 1

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0318 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 13 8
subtype1 3 6
subtype2 10 2

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 14 6
subtype1 6 3
subtype2 8 3

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.44 (Fisher's exact test), Q value = 1

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 15 1 5
subtype1 8 0 1
subtype2 7 1 4

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 1 (Fisher's exact test), Q value = 1

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 6 15
subtype1 3 6
subtype2 3 9

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'GENDER'

Clustering Approach #2: 'METHLYATION CNMF'

Table S9.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2
Number of samples 11 10
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.419 (logrank test), Q value = 1

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 21 16 0.2 - 91.7 (17.3)
subtype1 11 8 8.0 - 91.7 (17.9)
subtype2 10 8 0.2 - 80.8 (9.5)

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.672 (Wilcoxon-test), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 21 63.6 (7.5)
subtype1 11 62.8 (7.7)
subtype2 10 64.5 (7.5)

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0701 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IB STAGE II STAGE III STAGE IV
ALL 1 1 6 11 2
subtype1 0 0 5 4 2
subtype2 1 1 1 7 0

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.387 (Fisher's exact test), Q value = 1

Table S13.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 13 8
subtype1 8 3
subtype2 5 5

Figure S11.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S14.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 14 6
subtype1 8 3
subtype2 6 3

Figure S12.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 15 1 5
subtype1 7 1 3
subtype2 8 0 2

Figure S13.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 1 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 6 15
subtype1 3 8
subtype2 3 7

Figure S14.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'GENDER'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S17.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2
Number of samples 11 10
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.109 (logrank test), Q value = 1

Table S18.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 21 16 0.2 - 91.7 (17.3)
subtype1 11 8 8.0 - 91.7 (18.8)
subtype2 10 8 0.2 - 51.8 (9.5)

Figure S15.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.274 (Wilcoxon-test), Q value = 1

Table S19.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 21 63.6 (7.5)
subtype1 11 61.7 (7.9)
subtype2 10 65.7 (6.8)

Figure S16.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.0305 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IB STAGE II STAGE III STAGE IV
ALL 1 1 6 11 2
subtype1 1 0 5 3 2
subtype2 0 1 1 8 0

Figure S17.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0805 (Fisher's exact test), Q value = 1

Table S21.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 13 8
subtype1 9 2
subtype2 4 6

Figure S18.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S22.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 14 6
subtype1 8 3
subtype2 6 3

Figure S19.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S23.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 15 1 5
subtype1 7 1 3
subtype2 8 0 2

Figure S20.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 1 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 6 15
subtype1 3 8
subtype2 3 7

Figure S21.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'GENDER'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S25.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 11 4 6
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.00209 (logrank test), Q value = 0.12

Table S26.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 21 16 0.2 - 91.7 (17.3)
subtype1 11 8 1.9 - 91.7 (17.9)
subtype2 4 3 18.8 - 51.8 (23.6)
subtype3 6 5 0.2 - 17.3 (6.6)

Figure S22.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.125 (Kruskal-Wallis (anova)), Q value = 1

Table S27.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 21 63.6 (7.5)
subtype1 11 62.8 (7.9)
subtype2 4 58.5 (5.8)
subtype3 6 68.5 (5.4)

Figure S23.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.71 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE I STAGE IB STAGE II STAGE III STAGE IV
ALL 1 1 6 11 2
subtype1 1 0 4 4 2
subtype2 0 0 1 3 0
subtype3 0 1 1 4 0

Figure S24.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.352 (Fisher's exact test), Q value = 1

Table S29.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 13 8
subtype1 8 3
subtype2 3 1
subtype3 2 4

Figure S25.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0746 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 14 6
subtype1 8 3
subtype2 1 3
subtype3 5 0

Figure S26.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S31.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 15 1 5
subtype1 7 1 3
subtype2 3 0 1
subtype3 5 0 1

Figure S27.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.67 (Fisher's exact test), Q value = 1

Table S32.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 6 15
subtype1 3 8
subtype2 2 2
subtype3 1 5

Figure S28.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S33.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2
Number of samples 9 7
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.332 (logrank test), Q value = 1

Table S34.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 16 12 0.2 - 51.8 (14.3)
subtype1 9 7 1.9 - 51.8 (17.9)
subtype2 7 5 0.2 - 23.9 (12.2)

Figure S29.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.0711 (Wilcoxon-test), Q value = 1

Table S35.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 16 63.8 (6.9)
subtype1 9 61.2 (8.2)
subtype2 7 67.1 (2.4)

Figure S30.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.286 (Fisher's exact test), Q value = 1

Table S36.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE IB STAGE II STAGE III STAGE IV
ALL 1 3 10 2
subtype1 0 3 5 1
subtype2 1 0 5 1

Figure S31.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.315 (Fisher's exact test), Q value = 1

Table S37.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 8 8
subtype1 6 3
subtype2 2 5

Figure S32.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.58 (Fisher's exact test), Q value = 1

Table S38.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 10 5
subtype1 5 4
subtype2 5 1

Figure S33.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.M.STAGE'

P value = 0.759 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 12 1 3
subtype1 7 0 2
subtype2 5 1 1

Figure S34.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.308 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 5 11
subtype1 4 5
subtype2 1 6

Figure S35.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #7: 'GENDER'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S41.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 3 3 4 2 2 1 1
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.312 (logrank test), Q value = 1

Table S42.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 10 7 0.2 - 31.2 (11.6)
subtype1 3 2 13.6 - 31.2 (17.9)
subtype2 3 2 1.9 - 12.2 (10.9)
subtype3 4 3 0.2 - 23.9 (4.4)

Figure S36.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.585 (Kruskal-Wallis (anova)), Q value = 1

Table S43.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 10 65.3 (7.0)
subtype1 3 61.3 (7.1)
subtype2 3 67.3 (11.0)
subtype3 4 66.8 (3.3)

Figure S37.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'NEOPLASM.DISEASESTAGE'

P value = 0.785 (Fisher's exact test), Q value = 1

Table S44.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE IB STAGE II STAGE III STAGE IV
ALL 1 2 6 1
subtype1 0 1 1 1
subtype2 0 1 2 0
subtype3 1 0 3 0

Figure S38.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 0.743 (Fisher's exact test), Q value = 1

Table S45.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 4 6
subtype1 2 1
subtype2 1 2
subtype3 1 3

Figure S39.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.678 (Fisher's exact test), Q value = 1

Table S46.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 6 3
subtype1 1 2
subtype2 3 0
subtype3 2 1

Figure S40.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.M.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S47.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 MX
ALL 8 2
subtype1 2 1
subtype2 3 0
subtype3 3 1

Figure S41.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.134 (Fisher's exact test), Q value = 1

Table S48.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 2 8
subtype1 0 3
subtype2 2 1
subtype3 0 4

Figure S42.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'GENDER'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S49.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2
Number of samples 8 8
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.48 (logrank test), Q value = 1

Table S50.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 16 12 0.2 - 51.8 (14.3)
subtype1 8 7 1.9 - 51.8 (18.4)
subtype2 8 5 0.2 - 23.9 (12.9)

Figure S43.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.247 (Wilcoxon-test), Q value = 1

Table S51.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 16 63.8 (6.9)
subtype1 8 62.0 (8.3)
subtype2 8 65.6 (4.8)

Figure S44.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S52.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE IB STAGE II STAGE III STAGE IV
ALL 1 3 10 2
subtype1 0 2 5 1
subtype2 1 1 5 1

Figure S45.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.619 (Fisher's exact test), Q value = 1

Table S53.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 8 8
subtype1 5 3
subtype2 3 5

Figure S46.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.282 (Fisher's exact test), Q value = 1

Table S54.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 10 5
subtype1 4 4
subtype2 6 1

Figure S47.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 0.57 (Fisher's exact test), Q value = 1

Table S55.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 12 1 3
subtype1 7 0 1
subtype2 5 1 2

Figure S48.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.282 (Fisher's exact test), Q value = 1

Table S56.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 5 11
subtype1 4 4
subtype2 1 7

Figure S49.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'GENDER'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S57.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 2 3 5 2 2 2
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.73 (logrank test), Q value = 1

Table S58.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 8 6 0.2 - 23.9 (8.1)
subtype2 3 2 1.9 - 12.2 (10.9)
subtype3 5 4 0.2 - 23.9 (5.2)

Figure S50.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.881 (Wilcoxon-test), Q value = 1

Table S59.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 8 67.1 (6.3)
subtype2 3 67.3 (11.0)
subtype3 5 67.0 (2.9)

Figure S51.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'NEOPLASM.DISEASESTAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S60.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

nPatients STAGE IB STAGE II STAGE III STAGE IV
ALL 1 1 5 1
subtype2 0 1 2 0
subtype3 1 0 3 1

Figure S52.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'NEOPLASM.DISEASESTAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S61.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

nPatients T1+T2 T3+T4
ALL 3 5
subtype2 1 2
subtype3 2 3

Figure S53.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S62.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

nPatients N0 N1+N2
ALL 6 1
subtype2 3 0
subtype3 3 1

Figure S54.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.M.STAGE'

P value = 1 (Fisher's exact test), Q value = 1

Table S63.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

nPatients M0 M1 MX
ALL 6 1 1
subtype2 3 0 0
subtype3 3 1 1

Figure S55.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'PATHOLOGY.M.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.107 (Fisher's exact test), Q value = 1

Table S64.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

nPatients FEMALE MALE
ALL 2 6
subtype2 2 1
subtype3 0 5

Figure S56.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'GENDER'

Methods & Data
Input
  • Cluster data file = MESO-TP.mergedcluster.txt

  • Clinical data file = MESO-TP.merged_data.txt

  • Number of patients = 21

  • Number of clustering approaches = 8

  • Number of selected clinical features = 7

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)