This pipeline uses various statistical tests to identify miRs whose log2 expression levels correlated to selected clinical features.
Testing the association between 471 miRs and 13 clinical features across 272 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, 10 clinical features related to at least one miRs.
-
3 miRs correlated to 'AGE'.
-
HSA-MIR-627 , HSA-MIR-570 , HSA-MIR-3922
-
16 miRs correlated to 'PATHOLOGY.T.STAGE'.
-
HSA-MIR-3676 , HSA-MIR-451 , HSA-MIR-30A , HSA-MIR-133A-1 , HSA-MIR-486 , ...
-
7 miRs correlated to 'PATHOLOGY.N.STAGE'.
-
HSA-MIR-378 , HSA-MIR-133A-1 , HSA-MIR-221 , HSA-MIR-222 , HSA-MIR-1-2 , ...
-
1 miR correlated to 'HISTOLOGICAL.TYPE'.
-
HSA-MIR-143
-
8 miRs correlated to 'NUMBER.OF.LYMPH.NODES'.
-
HSA-MIR-133A-1 , HSA-MIR-221 , HSA-MIR-378 , HSA-MIR-222 , HSA-MIR-1-2 , ...
-
25 miRs correlated to 'GLEASON_SCORE_COMBINED'.
-
HSA-MIR-1-2 , HSA-MIR-133B , HSA-MIR-133A-1 , HSA-MIR-592 , HSA-MIR-221 , ...
-
25 miRs correlated to 'GLEASON_SCORE_PRIMARY'.
-
HSA-MIR-221 , HSA-MIR-1-2 , HSA-MIR-222 , HSA-MIR-133A-1 , HSA-MIR-891A , ...
-
26 miRs correlated to 'GLEASON_SCORE'.
-
HSA-MIR-1-2 , HSA-MIR-217 , HSA-MIR-221 , HSA-MIR-133B , HSA-MIR-592 , ...
-
11 miRs correlated to 'PSA_RESULT_PREOP'.
-
HSA-MIR-15B , HSA-MIR-145 , HSA-MIR-130A , HSA-MIR-133A-1 , HSA-MIR-205 , ...
-
1 miR correlated to 'PSA_VALUE'.
-
HSA-MIR-450A-1
-
No miRs correlated to 'COMPLETENESS.OF.RESECTION', 'GLEASON_SCORE_SECONDARY', and 'RACE'.
Complete statistical result table is provided in Supplement Table 1
Table 1. Get Full Table This table shows the clinical features, statistical methods used, and the number of miRs that are significantly associated with each clinical feature at P value < 0.05 and Q value < 0.3.
| Clinical feature | Statistical test | Significant miRs | Associated with | Associated with | ||
|---|---|---|---|---|---|---|
| AGE | Spearman correlation test | N=3 | older | N=3 | younger | N=0 |
| PATHOLOGY T STAGE | Spearman correlation test | N=16 | higher stage | N=0 | lower stage | N=16 |
| PATHOLOGY N STAGE | Wilcoxon test | N=7 | class1 | N=7 | class0 | N=0 |
| HISTOLOGICAL TYPE | Wilcoxon test | N=1 | prostate adenocarcinoma acinar type | N=1 | prostate adenocarcinoma other subtype | N=0 |
| COMPLETENESS OF RESECTION | Kruskal-Wallis test | N=0 | ||||
| NUMBER OF LYMPH NODES | Spearman correlation test | N=8 | higher number.of.lymph.nodes | N=0 | lower number.of.lymph.nodes | N=8 |
| GLEASON_SCORE_COMBINED | Spearman correlation test | N=25 | higher score | N=9 | lower score | N=16 |
| GLEASON_SCORE_PRIMARY | Spearman correlation test | N=25 | higher score | N=5 | lower score | N=20 |
| GLEASON_SCORE_SECONDARY | Spearman correlation test | N=0 | ||||
| GLEASON_SCORE | Spearman correlation test | N=26 | higher score | N=10 | lower score | N=16 |
| PSA_RESULT_PREOP | Spearman correlation test | N=11 | higher psa_result_preop | N=2 | lower psa_result_preop | N=9 |
| PSA_VALUE | Spearman correlation test | N=1 | higher psa_value | N=0 | lower psa_value | N=1 |
| RACE | Kruskal-Wallis test | N=0 |
Table S1. Basic characteristics of clinical feature: 'AGE'
| AGE | Mean (SD) | 60.38 (7) |
| Significant markers | N = 3 | |
| pos. correlated | 3 | |
| neg. correlated | 0 |
Table S2. Get Full Table List of 3 miRs significantly correlated to 'AGE' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-627 | 0.2766 | 9.087e-06 | 0.00428 |
| HSA-MIR-570 | 0.2709 | 0.000255 | 0.12 |
| HSA-MIR-3922 | 0.3141 | 0.0005035 | 0.236 |
Table S3. Basic characteristics of clinical feature: 'PATHOLOGY.T.STAGE'
| PATHOLOGY.T.STAGE | Mean (SD) | 2.54 (0.53) |
| N | ||
| 2 | 127 | |
| 3 | 139 | |
| 4 | 4 | |
| Significant markers | N = 16 | |
| pos. correlated | 0 | |
| neg. correlated | 16 |
Table S4. Get Full Table List of top 10 miRs significantly correlated to 'PATHOLOGY.T.STAGE' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-3676 | -0.3556 | 2.073e-09 | 9.76e-07 |
| HSA-MIR-451 | -0.314 | 1.372e-07 | 6.45e-05 |
| HSA-MIR-30A | -0.3041 | 3.496e-07 | 0.000164 |
| HSA-MIR-133A-1 | -0.2923 | 1.016e-06 | 0.000475 |
| HSA-MIR-486 | -0.267 | 8.699e-06 | 0.00406 |
| HSA-MIR-29C | -0.2505 | 3.131e-05 | 0.0146 |
| HSA-MIR-1468 | -0.2457 | 4.465e-05 | 0.0208 |
| HSA-MIR-598 | -0.2413 | 6.174e-05 | 0.0286 |
| HSA-MIR-222 | -0.2349 | 9.761e-05 | 0.0452 |
| HSA-MIR-145 | -0.2322 | 0.0001179 | 0.0545 |
Table S5. Basic characteristics of clinical feature: 'PATHOLOGY.N.STAGE'
| PATHOLOGY.N.STAGE | Labels | N |
| class0 | 203 | |
| class1 | 23 | |
| Significant markers | N = 7 | |
| Higher in class1 | 7 | |
| Higher in class0 | 0 |
Table S6. Get Full Table List of 7 miRs differentially expressed by 'PATHOLOGY.N.STAGE'
| W(pos if higher in 'class1') | wilcoxontestP | Q | AUC | |
|---|---|---|---|---|
| HSA-MIR-378 | 1162 | 8.027e-05 | 0.0378 | 0.7511 |
| HSA-MIR-133A-1 | 1166 | 8.489e-05 | 0.0399 | 0.7503 |
| HSA-MIR-221 | 1167 | 8.609e-05 | 0.0404 | 0.7501 |
| HSA-MIR-222 | 1238 | 0.0002261 | 0.106 | 0.7348 |
| HSA-MIR-1-2 | 1245 | 0.000248 | 0.116 | 0.7333 |
| HSA-MIR-133B | 1305 | 0.0005822 | 0.271 | 0.7191 |
| HSA-MIR-133A-2 | 1285 | 0.0005836 | 0.271 | 0.7192 |
Table S7. Basic characteristics of clinical feature: 'HISTOLOGICAL.TYPE'
| HISTOLOGICAL.TYPE | Labels | N |
| PROSTATE ADENOCARCINOMA OTHER SUBTYPE | 6 | |
| PROSTATE ADENOCARCINOMA ACINAR TYPE | 266 | |
| Significant markers | N = 1 | |
| Higher in PROSTATE ADENOCARCINOMA ACINAR TYPE | 1 | |
| Higher in PROSTATE ADENOCARCINOMA OTHER SUBTYPE | 0 |
Table S8. Get Full Table List of one miR differentially expressed by 'HISTOLOGICAL.TYPE'
| W(pos if higher in 'PROSTATE ADENOCARCINOMA ACINAR TYPE') | wilcoxontestP | Q | AUC | |
|---|---|---|---|---|
| HSA-MIR-143 | c("1461", "0.0005075") | c("1461", "0.0005075") | 0.206 | 0.9154 |
Table S9. Basic characteristics of clinical feature: 'COMPLETENESS.OF.RESECTION'
| COMPLETENESS.OF.RESECTION | Labels | N |
| R0 | 193 | |
| R1 | 57 | |
| R2 | 3 | |
| RX | 6 | |
| Significant markers | N = 0 |
Table S10. Basic characteristics of clinical feature: 'NUMBER.OF.LYMPH.NODES'
| NUMBER.OF.LYMPH.NODES | Mean (SD) | 0.23 (1.2) |
| Significant markers | N = 8 | |
| pos. correlated | 0 | |
| neg. correlated | 8 |
Table S11. Get Full Table List of 8 miRs significantly correlated to 'NUMBER.OF.LYMPH.NODES' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-133A-1 | -0.2646 | 6.097e-05 | 0.0287 |
| HSA-MIR-221 | -0.2642 | 6.224e-05 | 0.0293 |
| HSA-MIR-378 | -0.2641 | 6.278e-05 | 0.0294 |
| HSA-MIR-222 | -0.2479 | 0.0001782 | 0.0834 |
| HSA-MIR-1-2 | -0.2474 | 0.0001835 | 0.0857 |
| HSA-MIR-133A-2 | -0.2386 | 0.0003554 | 0.166 |
| HSA-MIR-133B | -0.2366 | 0.0003641 | 0.169 |
| HSA-MIR-139 | -0.2266 | 0.0006328 | 0.294 |
Table S12. Basic characteristics of clinical feature: 'GLEASON_SCORE_COMBINED'
| GLEASON_SCORE_COMBINED | Mean (SD) | 7.29 (0.81) |
| Significant markers | N = 25 | |
| pos. correlated | 9 | |
| neg. correlated | 16 |
Table S13. Get Full Table List of top 10 miRs significantly correlated to 'GLEASON_SCORE_COMBINED' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-1-2 | -0.3744 | 1.777e-10 | 8.37e-08 |
| HSA-MIR-133B | -0.3435 | 6.806e-09 | 3.2e-06 |
| HSA-MIR-133A-1 | -0.3272 | 3.298e-08 | 1.55e-05 |
| HSA-MIR-592 | 0.3488 | 5.568e-08 | 2.61e-05 |
| HSA-MIR-221 | -0.319 | 7.554e-08 | 3.53e-05 |
| HSA-MIR-217 | 0.316 | 1.015e-07 | 4.73e-05 |
| HSA-MIR-133A-2 | -0.3089 | 2.605e-07 | 0.000121 |
| HSA-MIR-222 | -0.2831 | 2.083e-06 | 0.000966 |
| HSA-MIR-3676 | -0.2839 | 2.125e-06 | 0.000984 |
| HSA-MIR-378C | -0.2683 | 7.236e-06 | 0.00334 |
Table S14. Basic characteristics of clinical feature: 'GLEASON_SCORE_PRIMARY'
| GLEASON_SCORE_PRIMARY | Mean (SD) | 3.49 (0.56) |
| Score | N | |
| 2 | 1 | |
| 3 | 145 | |
| 4 | 118 | |
| 5 | 8 | |
| Significant markers | N = 25 | |
| pos. correlated | 5 | |
| neg. correlated | 20 |
Table S15. Get Full Table List of top 10 miRs significantly correlated to 'GLEASON_SCORE_PRIMARY' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-221 | -0.3741 | 1.836e-10 | 8.65e-08 |
| HSA-MIR-1-2 | -0.35 | 2.96e-09 | 1.39e-06 |
| HSA-MIR-222 | -0.3233 | 4.91e-08 | 2.3e-05 |
| HSA-MIR-133A-1 | -0.3233 | 4.92e-08 | 2.3e-05 |
| HSA-MIR-891A | -0.3234 | 8.085e-08 | 3.78e-05 |
| HSA-MIR-133B | -0.3107 | 1.87e-07 | 8.71e-05 |
| HSA-MIR-184 | -0.3276 | 3.739e-07 | 0.000174 |
| HSA-MIR-3676 | -0.3015 | 4.439e-07 | 0.000206 |
| HSA-MIR-378C | -0.2979 | 5.604e-07 | 0.000259 |
| HSA-MIR-133A-2 | -0.2879 | 1.713e-06 | 0.000792 |
Table S16. Basic characteristics of clinical feature: 'GLEASON_SCORE_SECONDARY'
| GLEASON_SCORE_SECONDARY | Mean (SD) | 3.8 (0.62) |
| Score | N | |
| 3 | 85 | |
| 4 | 156 | |
| 5 | 31 | |
| Significant markers | N = 0 |
Table S17. Basic characteristics of clinical feature: 'GLEASON_SCORE'
| GLEASON_SCORE | Mean (SD) | 7.33 (0.83) |
| Score | N | |
| 6 | 23 | |
| 7 | 176 | |
| 8 | 35 | |
| 9 | 37 | |
| 10 | 1 | |
| Significant markers | N = 26 | |
| pos. correlated | 10 | |
| neg. correlated | 16 |
Table S18. Get Full Table List of top 10 miRs significantly correlated to 'GLEASON_SCORE' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-1-2 | -0.3443 | 5.489e-09 | 2.59e-06 |
| HSA-MIR-217 | 0.3307 | 2.303e-08 | 1.08e-05 |
| HSA-MIR-221 | -0.3268 | 3.461e-08 | 1.62e-05 |
| HSA-MIR-133B | -0.3129 | 1.522e-07 | 7.12e-05 |
| HSA-MIR-592 | 0.3341 | 2.109e-07 | 9.85e-05 |
| HSA-MIR-133A-1 | -0.3073 | 2.342e-07 | 0.000109 |
| HSA-MIR-222 | -0.2922 | 9.373e-07 | 0.000436 |
| HSA-MIR-3676 | -0.2901 | 1.238e-06 | 0.000574 |
| HSA-MIR-133A-2 | -0.2848 | 2.247e-06 | 0.00104 |
| HSA-MIR-891A | -0.2781 | 4.65e-06 | 0.00215 |
Table S19. Basic characteristics of clinical feature: 'PSA_RESULT_PREOP'
| PSA_RESULT_PREOP | Mean (SD) | 10.48 (11) |
| Significant markers | N = 11 | |
| pos. correlated | 2 | |
| neg. correlated | 9 |
Table S20. Get Full Table List of top 10 miRs significantly correlated to 'PSA_RESULT_PREOP' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-15B | 0.2708 | 6.378e-06 | 0.003 |
| HSA-MIR-145 | -0.2408 | 6.409e-05 | 0.0301 |
| HSA-MIR-130A | -0.2295 | 0.0001426 | 0.0669 |
| HSA-MIR-133A-1 | -0.2279 | 0.0001583 | 0.0741 |
| HSA-MIR-205 | -0.2255 | 0.000192 | 0.0897 |
| HSA-MIR-222 | -0.2242 | 0.0002033 | 0.0947 |
| HSA-MIR-224 | -0.2215 | 0.0002505 | 0.116 |
| HSA-MIR-1-2 | -0.2191 | 0.0002852 | 0.132 |
| HSA-MIR-221 | -0.2131 | 0.0004231 | 0.196 |
| HSA-MIR-3647 | -0.2131 | 0.0004314 | 0.199 |
Table S21. Basic characteristics of clinical feature: 'PSA_VALUE'
| PSA_VALUE | Mean (SD) | 1.1 (3.9) |
| Significant markers | N = 1 | |
| pos. correlated | 0 | |
| neg. correlated | 1 |
Table S22. Get Full Table List of one miR significantly correlated to 'PSA_VALUE' by Spearman correlation test
| SpearmanCorr | corrP | Q | |
|---|---|---|---|
| HSA-MIR-450A-1 | -0.2588 | 0.0001068 | 0.0503 |
-
Expresson data file = PRAD-TP.miRseq_RPKM_log2.txt
-
Clinical data file = PRAD-TP.merged_data.txt
-
Number of patients = 272
-
Number of miRs = 471
-
Number of clinical features = 13
For continuous numerical clinical features, Spearman's rank correlation coefficients (Spearman 1904) and two-tailed P values were estimated using 'cor.test' function in R
For two-class clinical features, two-tailed Student's t test with unequal variance (Lehmann and Romano 2005) was applied to compare the log2-expression levels between the two clinical classes using 't.test' function in R
For multi-class clinical features (ordinal or nominal), one-way analysis of variance (Howell 2002) was applied to compare the log2-expression levels between different clinical classes using 'anova' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.
In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.