Correlation between aggregated molecular cancer subtypes and selected clinical features
Sarcoma (Primary solid tumor)
15 July 2014  |  analyses__2014_07_15
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1VT1QWT
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 4 clinical features across 114 patients, 4 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 7 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'GENDER'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that correlate to 'Time to Death'.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 5 subtypes that correlate to 'GENDER'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'Time to Death'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 4 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 4 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER RACE
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.808
(1.00)
0.0694
(1.00)
0.0385
(1.00)
0.784
(1.00)
METHLYATION CNMF 0.102
(1.00)
0.327
(1.00)
0.00476
(0.143)
0.0695
(1.00)
RNAseq CNMF subtypes 0.00756
(0.219)
0.35
(1.00)
0.0282
(0.789)
0.646
(1.00)
RNAseq cHierClus subtypes 0.601
(1.00)
0.0937
(1.00)
0.00262
(0.0812)
0.567
(1.00)
MIRSEQ CNMF 0.768
(1.00)
0.139
(1.00)
0.339
(1.00)
0.456
(1.00)
MIRSEQ CHIERARCHICAL 3.53e-11
(1.13e-09)
0.126
(1.00)
0.262
(1.00)
0.484
(1.00)
MIRseq Mature CNMF subtypes 0.435
(1.00)
0.162
(1.00)
0.355
(1.00)
0.548
(1.00)
MIRseq Mature cHierClus subtypes 0.628
(1.00)
0.0996
(1.00)
0.56
(1.00)
0.86
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 40 36 38
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.808 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 114 36 0.1 - 143.4 (17.9)
subtype1 40 13 0.1 - 108.1 (17.9)
subtype2 36 11 0.1 - 81.0 (12.7)
subtype3 38 12 0.1 - 143.4 (22.6)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.0694 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 114 61.3 (14.1)
subtype1 40 63.6 (13.1)
subtype2 36 62.2 (16.2)
subtype3 38 57.9 (12.6)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.0385 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 62 52
subtype1 16 24
subtype2 25 11
subtype3 21 17

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.784 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 77
subtype1 2 1 21
subtype2 1 3 27
subtype3 1 4 29

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #2: 'METHLYATION CNMF'

Table S6.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 19 21 33 13 13 11 4
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.102 (logrank test), Q value = 1

Table S7.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 114 36 0.1 - 143.4 (17.9)
subtype1 19 6 1.7 - 108.1 (15.1)
subtype2 21 6 0.7 - 70.5 (16.3)
subtype3 33 11 0.1 - 81.0 (25.1)
subtype4 13 6 0.1 - 74.7 (5.7)
subtype5 13 3 0.1 - 116.9 (22.6)
subtype6 11 3 1.1 - 143.4 (19.3)
subtype7 4 1 0.5 - 41.3 (8.9)

Figure S5.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.327 (Kruskal-Wallis (anova)), Q value = 1

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 114 61.3 (14.1)
subtype1 19 65.8 (13.9)
subtype2 21 63.0 (16.2)
subtype3 33 60.4 (12.3)
subtype4 13 61.9 (12.5)
subtype5 13 55.7 (8.1)
subtype6 11 58.1 (22.4)
subtype7 4 62.5 (7.1)

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.00476 (Fisher's exact test), Q value = 0.14

Table S9.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 62 52
subtype1 5 14
subtype2 9 12
subtype3 18 15
subtype4 11 2
subtype5 10 3
subtype6 5 6
subtype7 4 0

Figure S7.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'RACE'

P value = 0.0695 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 77
subtype1 0 0 12
subtype2 2 1 11
subtype3 0 2 30
subtype4 1 0 8
subtype5 1 3 6
subtype6 0 2 7
subtype7 0 0 3

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S11.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 20 31 15 45
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.00756 (logrank test), Q value = 0.22

Table S12.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 111 35 0.1 - 143.4 (18.1)
subtype1 20 7 1.8 - 143.4 (16.1)
subtype2 31 8 0.7 - 108.1 (17.8)
subtype3 15 7 0.1 - 74.7 (4.6)
subtype4 45 13 0.1 - 116.9 (24.0)

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.35 (Kruskal-Wallis (anova)), Q value = 1

Table S13.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 111 60.7 (13.8)
subtype1 20 59.3 (19.4)
subtype2 31 63.9 (13.9)
subtype3 15 62.0 (12.3)
subtype4 45 58.7 (11.1)

Figure S10.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.0282 (Fisher's exact test), Q value = 0.79

Table S14.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 60 51
subtype1 9 11
subtype2 11 20
subtype3 11 4
subtype4 29 16

Figure S11.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.646 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 74
subtype1 0 2 14
subtype2 2 1 14
subtype3 1 1 9
subtype4 1 4 37

Figure S12.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S16.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 30 22 16 30 13
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.601 (logrank test), Q value = 1

Table S17.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 111 35 0.1 - 143.4 (18.1)
subtype1 30 10 0.7 - 70.5 (17.4)
subtype2 22 8 0.1 - 108.1 (9.6)
subtype3 16 4 1.8 - 143.4 (18.7)
subtype4 30 10 0.1 - 81.0 (25.8)
subtype5 13 3 0.1 - 116.9 (18.1)

Figure S13.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.0937 (Kruskal-Wallis (anova)), Q value = 1

Table S18.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 111 60.7 (13.8)
subtype1 30 66.5 (12.1)
subtype2 22 57.5 (13.8)
subtype3 16 57.6 (20.4)
subtype4 30 60.7 (11.6)
subtype5 13 56.5 (9.7)

Figure S14.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.00262 (Fisher's exact test), Q value = 0.081

Table S19.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 60 51
subtype1 13 17
subtype2 12 10
subtype3 6 10
subtype4 16 14
subtype5 13 0

Figure S15.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.567 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 74
subtype1 2 1 13
subtype2 1 2 15
subtype3 0 2 10
subtype4 0 2 27
subtype5 1 1 9

Figure S16.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S21.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 45 54 14
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.768 (logrank test), Q value = 1

Table S22.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 36 0.1 - 143.4 (17.8)
subtype1 45 16 0.1 - 143.4 (17.8)
subtype2 54 16 0.1 - 116.9 (18.1)
subtype3 14 4 0.7 - 70.5 (16.2)

Figure S17.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.139 (Kruskal-Wallis (anova)), Q value = 1

Table S23.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 113 61.3 (14.1)
subtype1 45 60.8 (15.8)
subtype2 54 59.8 (12.5)
subtype3 14 68.4 (13.5)

Figure S18.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.339 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 61 52
subtype1 21 24
subtype2 33 21
subtype3 7 7

Figure S19.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.456 (Fisher's exact test), Q value = 1

Table S25.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 77
subtype1 1 3 25
subtype2 2 3 44
subtype3 1 2 8

Figure S20.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S26.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5
Number of samples 35 9 16 6 47
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 3.53e-11 (logrank test), Q value = 1.1e-09

Table S27.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 36 0.1 - 143.4 (17.8)
subtype1 35 12 0.1 - 143.4 (23.1)
subtype2 9 3 0.1 - 15.1 (5.3)
subtype3 16 4 0.7 - 70.5 (17.4)
subtype4 6 4 1.1 - 8.6 (4.8)
subtype5 47 13 0.1 - 116.9 (24.0)

Figure S21.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.126 (Kruskal-Wallis (anova)), Q value = 1

Table S28.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 113 61.3 (14.1)
subtype1 35 61.3 (16.7)
subtype2 9 62.6 (16.3)
subtype3 16 69.1 (12.7)
subtype4 6 57.5 (13.4)
subtype5 47 58.9 (11.5)

Figure S22.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.262 (Fisher's exact test), Q value = 1

Table S29.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 61 52
subtype1 15 20
subtype2 4 5
subtype3 8 8
subtype4 5 1
subtype5 29 18

Figure S23.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.484 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 77
subtype1 1 1 18
subtype2 1 0 5
subtype3 1 2 10
subtype4 0 1 4
subtype5 1 4 40

Figure S24.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S31.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 44 54 15
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.435 (logrank test), Q value = 1

Table S32.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 36 0.1 - 143.4 (17.8)
subtype1 44 16 0.1 - 143.4 (17.0)
subtype2 54 15 0.1 - 116.9 (19.6)
subtype3 15 5 0.7 - 70.5 (15.1)

Figure S25.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.162 (Kruskal-Wallis (anova)), Q value = 1

Table S33.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 113 61.3 (14.1)
subtype1 44 61.2 (15.8)
subtype2 54 59.6 (11.8)
subtype3 15 67.7 (15.7)

Figure S26.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.355 (Fisher's exact test), Q value = 1

Table S34.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 61 52
subtype1 21 23
subtype2 33 21
subtype3 7 8

Figure S27.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.548 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 77
subtype1 1 2 25
subtype2 2 4 44
subtype3 1 2 8

Figure S28.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S36.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 42 54 17
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.628 (logrank test), Q value = 1

Table S37.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 36 0.1 - 143.4 (17.8)
subtype1 42 16 0.1 - 143.4 (12.0)
subtype2 54 16 0.1 - 116.9 (18.1)
subtype3 17 4 0.7 - 70.5 (17.8)

Figure S29.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.0996 (Kruskal-Wallis (anova)), Q value = 1

Table S38.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 113 61.3 (14.1)
subtype1 42 60.8 (16.0)
subtype2 54 59.5 (12.5)
subtype3 17 68.1 (13.0)

Figure S30.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.56 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 61 52
subtype1 21 21
subtype2 32 22
subtype3 8 9

Figure S31.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.86 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 8 77
subtype1 1 2 23
subtype2 2 4 43
subtype3 1 2 11

Figure S32.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

Methods & Data
Input
  • Cluster data file = SARC-TP.mergedcluster.txt

  • Clinical data file = SARC-TP.merged_data.txt

  • Number of patients = 114

  • Number of clustering approaches = 8

  • Number of selected clinical features = 4

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)