This pipeline computes the correlation between significant arm-level copy number variations (cnvs) and molecular subtypes.
Testing the association between copy number variation 50 arm-level events and 8 molecular subtypes across 48 patients, 2 significant findings detected with P value < 0.05 and Q value < 0.25.
-
7p gain cnv correlated to 'CN_CNMF'.
-
7q gain cnv correlated to 'CN_CNMF'.
Table 1. Get Full Table Overview of the association between significant copy number variation of 50 arm-level events and 8 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 2 significant findings detected.
Clinical Features |
CN CNMF |
METHLYATION CNMF |
MRNASEQ CNMF |
MRNASEQ CHIERARCHICAL |
MIRSEQ CNMF |
MIRSEQ CHIERARCHICAL |
MIRSEQ MATURE CNMF |
MIRSEQ MATURE CHIERARCHICAL |
||
nCNV (%) | nWild-Type | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | Fisher's exact test | |
7p gain | 15 (31%) | 33 |
1.04e-05 (0.00379) |
0.534 (1.00) |
1 (1.00) |
0.459 (1.00) |
0.925 (1.00) |
0.887 (1.00) |
1 (1.00) |
0.124 (1.00) |
7q gain | 13 (27%) | 35 |
7.71e-06 (0.00282) |
1 (1.00) |
0.67 (1.00) |
0.122 (1.00) |
0.663 (1.00) |
0.988 (1.00) |
1 (1.00) |
0.382 (1.00) |
1q gain | 6 (12%) | 42 |
0.197 (1.00) |
0.666 (1.00) |
1 (1.00) |
0.641 (1.00) |
0.416 (1.00) |
0.315 (1.00) |
1 (1.00) |
0.844 (1.00) |
2p gain | 6 (12%) | 42 |
0.669 (1.00) |
0.666 (1.00) |
1 (1.00) |
1 (1.00) |
0.608 (1.00) |
1 (1.00) |
0.22 (1.00) |
|
2q gain | 6 (12%) | 42 |
0.669 (1.00) |
0.666 (1.00) |
1 (1.00) |
1 (1.00) |
0.604 (1.00) |
1 (1.00) |
0.223 (1.00) |
|
3p gain | 10 (21%) | 38 |
0.0363 (1.00) |
0.286 (1.00) |
1 (1.00) |
0.677 (1.00) |
0.635 (1.00) |
0.402 (1.00) |
0.707 (1.00) |
0.348 (1.00) |
3q gain | 13 (27%) | 35 |
0.0188 (1.00) |
0.193 (1.00) |
1 (1.00) |
0.516 (1.00) |
0.767 (1.00) |
0.566 (1.00) |
1 (1.00) |
0.249 (1.00) |
5p gain | 7 (15%) | 41 |
0.687 (1.00) |
1 (1.00) |
1 (1.00) |
0.339 (1.00) |
0.637 (1.00) |
0.356 (1.00) |
0.118 (1.00) |
|
5q gain | 6 (12%) | 42 |
1 (1.00) |
1 (1.00) |
0.464 (1.00) |
0.66 (1.00) |
0.796 (1.00) |
0.613 (1.00) |
0.535 (1.00) |
|
6p gain | 6 (12%) | 42 |
0.197 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.863 (1.00) |
0.644 (1.00) |
0.881 (1.00) |
6q gain | 4 (8%) | 44 |
0.0199 (1.00) |
0.609 (1.00) |
1 (1.00) |
0.711 (1.00) |
1 (1.00) |
0.0844 (1.00) |
0.874 (1.00) |
|
8p gain | 7 (15%) | 41 |
0.687 (1.00) |
0.416 (1.00) |
0.206 (1.00) |
0.102 (1.00) |
0.00554 (1.00) |
0.428 (1.00) |
0.257 (1.00) |
|
8q gain | 8 (17%) | 40 |
0.451 (1.00) |
0.245 (1.00) |
0.206 (1.00) |
0.148 (1.00) |
0.0279 (1.00) |
0.428 (1.00) |
0.258 (1.00) |
|
9p gain | 7 (15%) | 41 |
0.687 (1.00) |
1 (1.00) |
1 (1.00) |
0.776 (1.00) |
0.638 (1.00) |
1 (1.00) |
0.466 (1.00) |
|
9q gain | 7 (15%) | 41 |
0.687 (1.00) |
1 (1.00) |
1 (1.00) |
0.481 (1.00) |
0.292 (1.00) |
1 (1.00) |
0.266 (1.00) |
|
10p gain | 4 (8%) | 44 |
0.0199 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.581 (1.00) |
0.638 (1.00) |
|
10q gain | 4 (8%) | 44 |
0.286 (1.00) |
0.609 (1.00) |
0.464 (1.00) |
0.424 (1.00) |
0.78 (1.00) |
0.0844 (1.00) |
0.259 (1.00) |
|
11p gain | 9 (19%) | 39 |
0.451 (1.00) |
0.461 (1.00) |
0.6 (1.00) |
0.147 (1.00) |
0.717 (1.00) |
0.164 (1.00) |
0.433 (1.00) |
0.227 (1.00) |
11q gain | 13 (27%) | 35 |
0.0959 (1.00) |
0.193 (1.00) |
0.686 (1.00) |
0.0876 (1.00) |
0.45 (1.00) |
0.0739 (1.00) |
0.468 (1.00) |
0.396 (1.00) |
12p gain | 7 (15%) | 41 |
1 (1.00) |
0.416 (1.00) |
0.583 (1.00) |
0.111 (1.00) |
0.817 (1.00) |
0.27 (1.00) |
0.384 (1.00) |
0.862 (1.00) |
12q gain | 9 (19%) | 39 |
1 (1.00) |
0.137 (1.00) |
1 (1.00) |
0.147 (1.00) |
0.649 (1.00) |
0.138 (1.00) |
0.433 (1.00) |
0.488 (1.00) |
13q gain | 5 (10%) | 43 |
1 (1.00) |
1 (1.00) |
0.206 (1.00) |
0.134 (1.00) |
0.661 (1.00) |
0.0346 (1.00) |
0.839 (1.00) |
|
16p gain | 7 (15%) | 41 |
0.0114 (1.00) |
0.416 (1.00) |
0.6 (1.00) |
0.208 (1.00) |
0.327 (1.00) |
0.0294 (1.00) |
0.384 (1.00) |
0.513 (1.00) |
16q gain | 7 (15%) | 41 |
0.0967 (1.00) |
0.0971 (1.00) |
0.6 (1.00) |
1 (1.00) |
0.327 (1.00) |
0.0148 (1.00) |
0.384 (1.00) |
0.708 (1.00) |
17q gain | 3 (6%) | 45 |
0.554 (1.00) |
0.234 (1.00) |
0.464 (1.00) |
0.607 (1.00) |
0.0357 (1.00) |
0.581 (1.00) |
0.498 (1.00) |
|
18p gain | 13 (27%) | 35 |
0.0959 (1.00) |
1 (1.00) |
1 (1.00) |
0.677 (1.00) |
0.359 (1.00) |
0.121 (1.00) |
0.504 (1.00) |
0.523 (1.00) |
18q gain | 14 (29%) | 34 |
0.0491 (1.00) |
1 (1.00) |
0.655 (1.00) |
1 (1.00) |
0.454 (1.00) |
0.114 (1.00) |
0.323 (1.00) |
0.405 (1.00) |
19p gain | 3 (6%) | 45 |
0.554 (1.00) |
1 (1.00) |
0.464 (1.00) |
0.684 (1.00) |
0.692 (1.00) |
0.452 (1.00) |
||
19q gain | 3 (6%) | 45 |
0.554 (1.00) |
1 (1.00) |
0.464 (1.00) |
0.69 (1.00) |
0.688 (1.00) |
0.452 (1.00) |
||
20p gain | 5 (10%) | 43 |
0.372 (1.00) |
0.348 (1.00) |
1 (1.00) |
0.289 (1.00) |
0.374 (1.00) |
1 (1.00) |
0.703 (1.00) |
|
20q gain | 4 (8%) | 44 |
1 (1.00) |
0.609 (1.00) |
0.464 (1.00) |
0.655 (1.00) |
0.817 (1.00) |
0.581 (1.00) |
0.3 (1.00) |
|
21q gain | 10 (21%) | 38 |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.426 (1.00) |
0.0274 (1.00) |
0.186 (1.00) |
0.258 (1.00) |
0.371 (1.00) |
xq gain | 6 (12%) | 42 |
0.0297 (1.00) |
0.188 (1.00) |
1 (1.00) |
0.384 (1.00) |
0.521 (1.00) |
0.219 (1.00) |
0.158 (1.00) |
0.105 (1.00) |
1p loss | 3 (6%) | 45 |
0.554 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.847 (1.00) |
1 (1.00) |
|
3p loss | 5 (10%) | 43 |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.856 (1.00) |
0.959 (1.00) |
1 (1.00) |
0.664 (1.00) |
|
3q loss | 4 (8%) | 44 |
1 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.581 (1.00) |
0.524 (1.00) |
|
4p loss | 3 (6%) | 45 |
0.554 (1.00) |
1 (1.00) |
0.464 (1.00) |
0.153 (1.00) |
0.688 (1.00) |
1 (1.00) |
||
4q loss | 4 (8%) | 44 |
0.286 (1.00) |
0.609 (1.00) |
1 (1.00) |
0.466 (1.00) |
0.232 (1.00) |
0.613 (1.00) |
0.876 (1.00) |
|
6q loss | 7 (15%) | 41 |
1 (1.00) |
0.416 (1.00) |
1 (1.00) |
0.387 (1.00) |
0.708 (1.00) |
0.724 (1.00) |
0.0754 (1.00) |
0.513 (1.00) |
8p loss | 8 (17%) | 40 |
0.0446 (1.00) |
1 (1.00) |
0.311 (1.00) |
0.355 (1.00) |
0.198 (1.00) |
0.0253 (1.00) |
1 (1.00) |
0.934 (1.00) |
8q loss | 4 (8%) | 44 |
0.286 (1.00) |
1 (1.00) |
1 (1.00) |
0.657 (1.00) |
0.156 (1.00) |
1 (1.00) |
||
13q loss | 3 (6%) | 45 |
0.554 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.848 (1.00) |
1 (1.00) |
||
15q loss | 7 (15%) | 41 |
0.0114 (1.00) |
0.416 (1.00) |
0.639 (1.00) |
0.452 (1.00) |
0.126 (1.00) |
0.371 (1.00) |
0.197 (1.00) |
0.745 (1.00) |
16q loss | 4 (8%) | 44 |
0.0199 (1.00) |
1 (1.00) |
1 (1.00) |
0.639 (1.00) |
0.0954 (1.00) |
0.127 (1.00) |
0.239 (1.00) |
0.662 (1.00) |
17p loss | 9 (19%) | 39 |
0.0195 (1.00) |
1 (1.00) |
1 (1.00) |
0.763 (1.00) |
0.887 (1.00) |
0.502 (1.00) |
0.384 (1.00) |
0.27 (1.00) |
17q loss | 4 (8%) | 44 |
0.286 (1.00) |
0.609 (1.00) |
1 (1.00) |
0.712 (1.00) |
0.489 (1.00) |
0.0844 (1.00) |
0.463 (1.00) |
|
18p loss | 5 (10%) | 43 |
0.372 (1.00) |
0.348 (1.00) |
0.484 (1.00) |
0.555 (1.00) |
0.249 (1.00) |
0.158 (1.00) |
0.216 (1.00) |
|
18q loss | 4 (8%) | 44 |
0.286 (1.00) |
0.609 (1.00) |
1 (1.00) |
0.654 (1.00) |
1 (1.00) |
0.581 (1.00) |
0.524 (1.00) |
|
22q loss | 3 (6%) | 45 |
0.056 (1.00) |
1 (1.00) |
1 (1.00) |
1 (1.00) |
0.438 (1.00) |
1 (1.00) |
||
xq loss | 5 (10%) | 43 |
0.372 (1.00) |
0.348 (1.00) |
0.583 (1.00) |
0.566 (1.00) |
0.333 (1.00) |
0.0139 (1.00) |
0.356 (1.00) |
0.286 (1.00) |
P value = 1.04e-05 (Fisher's exact test), Q value = 0.0038
Table S1. Gene #10: '7p gain' versus Molecular Subtype #1: 'CN_CNMF'
nPatients | CLUS_1 | CLUS_2 |
---|---|---|
ALL | 29 | 19 |
7P GAIN MUTATED | 2 | 13 |
7P GAIN WILD-TYPE | 27 | 6 |
Figure S1. Get High-res Image Gene #10: '7p gain' versus Molecular Subtype #1: 'CN_CNMF'

P value = 7.71e-06 (Fisher's exact test), Q value = 0.0028
Table S2. Gene #11: '7q gain' versus Molecular Subtype #1: 'CN_CNMF'
nPatients | CLUS_1 | CLUS_2 |
---|---|---|
ALL | 29 | 19 |
7Q GAIN MUTATED | 1 | 12 |
7Q GAIN WILD-TYPE | 28 | 7 |
Figure S2. Get High-res Image Gene #11: '7q gain' versus Molecular Subtype #1: 'CN_CNMF'

-
Copy number data file = transformed.cor.cli.txt
-
Molecular subtypes file = DLBC-TP.transferedmergedcluster.txt
-
Number of patients = 48
-
Number of significantly arm-level cnvs = 50
-
Number of molecular subtypes = 8
-
Exclude genes that fewer than K tumors have mutations, K = 3
For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R
For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.