Analysis Overview
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (Primary solid tumor)
17 October 2014  |  analyses__2014_10_17
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (Primary solid tumor cohort) - 17 October 2014. Broad Institute of MIT and Harvard. doi:10.7908/C17M06S7
Overview
Introduction

This is an overview of Lymphoid Neoplasm Diffuse Large B-cell Lymphoma analysis pipelines from Firehose run "17 October 2014".

Summary

Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.

Results
  • Sequence and Copy Number Analyses

    • SNP6 Copy number analysis (GISTIC2)
      View Report | There were 48 tumor samples used in this analysis: 11 significant arm-level results, 14 significant focal amplifications, and 27 significant focal deletions were found.

  • Correlations to Clinical Parameters

    • Correlation between aggregated molecular cancer subtypes and selected clinical features
      View Report | Testing the association between subtypes identified by 8 different clustering approaches and 4 clinical features across 35 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

    • Correlation between copy number variation genes (focal events) and selected clinical features
      View Report | Testing the association between copy number variation 37 focal events and 4 clinical features across 35 patients, no significant finding detected with Q value < 0.25.

    • Correlation between copy number variations of arm-level result and selected clinical features
      View Report | Testing the association between copy number variation 37 arm-level events and 4 clinical features across 35 patients, no significant finding detected with Q value < 0.25.

    • Correlation between gene methylation status and clinical features
      View Report | Testing the association between 19740 genes and 4 clinical features across 35 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, no clinical feature related to at least one genes.

    • Correlation between miRseq expression and clinical features
      View Report | Testing the association between 540 miRs and 4 clinical features across 34 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, no clinical feature related to at least one miRs.

    • Correlation between mRNAseq expression and clinical features
      View Report | Testing the association between 17576 genes and 4 clinical features across 27 samples, statistically thresholded by P value < 0.05 and Q value < 0.3, no clinical feature related to at least one genes.

  • Clustering Analyses

    • Clustering of copy number data by focal peak region with log2 ratio: consensus NMF
      View Report | The most robust consensus NMF clustering of 48 samples using the 41 copy number focal regions was identified for k = 2 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

    • Clustering of copy number data by peak region with threshold value: consensus NMF
      View Report | The most robust consensus NMF clustering of 48 samples using the 41 copy number focal regions was identified for k = 2 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

    • Clustering of Methylation: consensus NMF
      View Report | The 13938 most variable methylated genes were selected based on variation. The variation cutoff are set for each tumor type empirically by fitting a bimodal distriution. For genes with multiple methylation probes, we chose the most variable one to represent the gene. Consensus NMF clustering of 48 samples and 13938 genes identified 2 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq mature expression: consensus hierarchical
      View Report | Median absolute deviation (MAD) was used to select 647 most variable miRs. Consensus ward linkage hierarchical clustering of 42 samples and 647 miRs identified 9 subtypes with the stability of the clustering increasing for k = 2 to k = 10.

    • Clustering of miRseq mature expression: consensus NMF
      View Report | We filtered the data to 647 most variable miRs. Consensus NMF clustering of 42 samples and 647 miRs identified 2 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of miRseq precursor expression: consensus hierarchical
      View Report | Median absolute deviation (MAD) was used to select 135 most variable miRs. Consensus ward linkage hierarchical clustering of 47 samples and 135 miRs identified 5 subtypes with the stability of the clustering increasing for k = 2 to k = 10.

    • Clustering of miRseq precursor expression: consensus NMF
      View Report | We filtered the data to 150 most variable miRs. Consensus NMF clustering of 47 samples and 150 miRs identified 4 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

    • Clustering of mRNAseq gene expression: consensus hierarchical
      View Report | Median absolute deviation (MAD) was used to select 1500 most variable genes. Consensus ward linkage hierarchical clustering of 28 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 10.

    • Clustering of mRNAseq gene expression: consensus NMF
      View Report | The most robust consensus NMF clustering of 28 samples using the 1500 most variable genes was identified for k = 2 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

  • Pathway Analyses

    • PARADIGM pathway analysis of mRNASeq expression and copy number data
      View Report | There were 27 significant pathways identified in this analysis.

    • PARADIGM pathway analysis of mRNASeq expression data
      View Report | There were 39 significant pathways identified in this analysis.

  • Other Correlation Analyses

    • Correlation between copy number variation genes (focal events) and molecular subtypes
      View Report | Testing the association between copy number variation 40 focal events and 8 molecular subtypes across 48 patients, 3 significant findings detected with P value < 0.05 and Q value < 0.25.

    • Correlation between copy number variations of arm-level result and molecular subtypes
      View Report | Testing the association between copy number variation 50 arm-level events and 8 molecular subtypes across 48 patients, 2 significant findings detected with P value < 0.05 and Q value < 0.25.

    • Correlation between mRNA expression and DNA methylation
      View Report | The top 25 correlated methylation probes per gene are displayed. Total number of matched samples = 28. Number of gene expression samples = 28. Number of methylation samples = 48.

    • Correlations between copy number and mRNAseq expression
      View Report | The correlation coefficients in 10, 20, 30, 40, 50, 60, 70, 80, 90 percentiles are 730, 1653.2, 2674.8, 3322.4, 3929, 4534, 5178.2, 5860.8, 6657.4, respectively.

Methods & Data
Input
  • Summary Report Date = Wed Jan 21 16:29:26 2015

  • Protection = FALSE