Correlation between copy number variation genes (focal events) and molecular subtypes
Kidney Chromophobe (Primary solid tumor)
17 October 2014  |  analyses__2014_10_17
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between copy number variation genes (focal events) and molecular subtypes. Broad Institute of MIT and Harvard. doi:10.7908/C1GF0SDS
Overview
Introduction

This pipeline computes the correlation between significant copy number variation (cnv focal) genes and molecular subtypes.

Summary

Testing the association between copy number variation 2 focal events and 8 molecular subtypes across 66 patients, 2 significant findings detected with P value < 0.05 and Q value < 0.25.

  • amp_8q11.23 cnv correlated to 'MRNASEQ_CNMF'.

  • amp_15q22.31 cnv correlated to 'MRNASEQ_CNMF'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between significant copy number variation of 2 focal events and 8 molecular subtypes. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 2 significant findings detected.

Clinical
Features
CN
CNMF
METHLYATION
CNMF
MRNASEQ
CNMF
MRNASEQ
CHIERARCHICAL
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRSEQ
MATURE
CNMF
MIRSEQ
MATURE
CHIERARCHICAL
nCNV (%) nWild-Type Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test Fisher's exact test
amp 8q11 23 19 (29%) 47 0.321
(1.00)
0.625
(1.00)
0.00283
(0.0453)
0.0245
(0.343)
1
(1.00)
0.228
(1.00)
0.363
(1.00)
0.118
(1.00)
amp 15q22 31 23 (35%) 43 0.0534
(0.694)
0.582
(1.00)
0.00627
(0.094)
0.182
(1.00)
0.526
(1.00)
0.301
(1.00)
0.554
(1.00)
0.365
(1.00)
'amp_8q11.23' versus 'MRNASEQ_CNMF'

P value = 0.00283 (Fisher's exact test), Q value = 0.045

Table S1.  Gene #1: 'amp_8q11.23' versus Molecular Subtype #3: 'MRNASEQ_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3 CLUS_4
ALL 19 22 15 10
AMP PEAK 1(8Q11.23) MUTATED 3 13 2 1
AMP PEAK 1(8Q11.23) WILD-TYPE 16 9 13 9

Figure S1.  Get High-res Image Gene #1: 'amp_8q11.23' versus Molecular Subtype #3: 'MRNASEQ_CNMF'

'amp_15q22.31' versus 'MRNASEQ_CNMF'

P value = 0.00627 (Fisher's exact test), Q value = 0.094

Table S2.  Gene #2: 'amp_15q22.31' versus Molecular Subtype #3: 'MRNASEQ_CNMF'

nPatients CLUS_1 CLUS_2 CLUS_3 CLUS_4
ALL 19 22 15 10
AMP PEAK 2(15Q22.31) MUTATED 5 13 5 0
AMP PEAK 2(15Q22.31) WILD-TYPE 14 9 10 10

Figure S2.  Get High-res Image Gene #2: 'amp_15q22.31' versus Molecular Subtype #3: 'MRNASEQ_CNMF'

Methods & Data
Input
  • Copy number data file = transformed.cor.cli.txt

  • Molecular subtype file = KICH-TP.transferedmergedcluster.txt

  • Number of patients = 66

  • Number of significantly focal cnvs = 2

  • Number of molecular subtypes = 8

  • Exclude genes that fewer than K tumors have alterations, K = 3

Fisher's exact test

For binary or multi-class clinical features (nominal or ordinal), two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[2] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)