Correlation between aggregated molecular cancer subtypes and selected clinical features
Pheochromocytoma and Paraganglioma (Primary solid tumor)
17 October 2014  |  analyses__2014_10_17
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1QV3KF6
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 5 clinical features across 132 patients, no significant finding detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes do not correlate to any clinical features.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes do not correlate to any clinical features.

  • 5 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 5 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, no significant finding detected.

Clinical
Features
Time
to
Death
AGE GENDER RACE ETHNICITY
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.885
(1.00)
0.967
(1.00)
0.974
(1.00)
0.898
(1.00)
0.306
(1.00)
METHLYATION CNMF 0.31
(1.00)
0.217
(1.00)
0.72
(1.00)
0.75
(1.00)
0.0714
(1.00)
RNAseq CNMF subtypes 0.596
(1.00)
0.952
(1.00)
0.275
(1.00)
0.794
(1.00)
0.0242
(0.969)
RNAseq cHierClus subtypes 0.685
(1.00)
0.029
(1.00)
0.588
(1.00)
0.996
(1.00)
0.0458
(1.00)
MIRSEQ CNMF 0.062
(1.00)
0.899
(1.00)
0.95
(1.00)
0.774
(1.00)
0.255
(1.00)
MIRSEQ CHIERARCHICAL 0.461
(1.00)
0.995
(1.00)
0.605
(1.00)
0.824
(1.00)
0.0675
(1.00)
MIRseq Mature CNMF subtypes 0.0961
(1.00)
0.0667
(1.00)
0.628
(1.00)
0.634
(1.00)
0.117
(1.00)
MIRseq Mature cHierClus subtypes 0.71
(1.00)
0.231
(1.00)
0.514
(1.00)
0.988
(1.00)
0.135
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 54 47 28
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.885 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 129 4 0.1 - 303.1 (15.0)
subtype1 54 2 0.6 - 303.1 (17.1)
subtype2 47 1 0.7 - 127.6 (17.5)
subtype3 28 1 0.1 - 107.5 (11.7)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.967 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 129 48.7 (15.7)
subtype1 54 49.2 (15.7)
subtype2 47 48.7 (16.4)
subtype3 28 47.9 (14.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.974 (Fisher's exact test), Q value = 1

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 73 56
subtype1 31 23
subtype2 26 21
subtype3 16 12

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.898 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 4 9 112
subtype1 1 3 4 45
subtype2 0 1 3 42
subtype3 0 0 2 25

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

'Copy Number Ratio CNMF subtypes' versus 'ETHNICITY'

P value = 0.306 (Fisher's exact test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 2 99
subtype1 0 45
subtype2 2 36
subtype3 0 18

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #2: 'METHLYATION CNMF'

Table S7.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3
Number of samples 28 66 38
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.31 (logrank test), Q value = 1

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 132 4 0.1 - 303.1 (16.9)
subtype1 28 2 0.9 - 303.1 (24.5)
subtype2 66 2 0.1 - 127.6 (11.9)
subtype3 38 0 0.7 - 110.5 (18.5)

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.217 (Kruskal-Wallis (anova)), Q value = 1

Table S9.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 132 48.8 (15.7)
subtype1 28 45.6 (16.0)
subtype2 66 51.3 (15.1)
subtype3 38 46.7 (16.4)

Figure S7.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.72 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 75 57
subtype1 14 14
subtype2 38 28
subtype3 23 15

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'RACE'

P value = 0.75 (Fisher's exact test), Q value = 1

Table S11.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 9 114
subtype1 0 1 2 24
subtype2 1 1 5 57
subtype3 0 3 2 33

Figure S9.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

'METHLYATION CNMF' versus 'ETHNICITY'

P value = 0.0714 (Fisher's exact test), Q value = 1

Table S12.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 101
subtype1 2 19
subtype2 0 51
subtype3 1 31

Figure S10.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S13.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 24 57 33 18
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.596 (logrank test), Q value = 1

Table S14.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 132 4 0.1 - 303.1 (16.9)
subtype1 24 1 0.9 - 303.1 (24.9)
subtype2 57 1 0.1 - 104.5 (12.5)
subtype3 33 2 0.8 - 127.6 (12.2)
subtype4 18 0 0.7 - 110.5 (17.4)

Figure S11.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.952 (Kruskal-Wallis (anova)), Q value = 1

Table S15.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 132 48.8 (15.7)
subtype1 24 48.5 (15.8)
subtype2 57 49.7 (15.5)
subtype3 33 47.1 (16.8)
subtype4 18 49.4 (15.6)

Figure S12.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.275 (Fisher's exact test), Q value = 1

Table S16.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 75 57
subtype1 17 7
subtype2 30 27
subtype3 16 17
subtype4 12 6

Figure S13.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.794 (Fisher's exact test), Q value = 1

Table S17.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 9 114
subtype1 0 1 3 18
subtype2 1 2 3 50
subtype3 0 1 1 31
subtype4 0 1 2 15

Figure S14.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

'RNAseq CNMF subtypes' versus 'ETHNICITY'

P value = 0.0242 (Fisher's exact test), Q value = 0.97

Table S18.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 101
subtype1 1 14
subtype2 0 47
subtype3 0 26
subtype4 2 14

Figure S15.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S19.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 28 58 28 18
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.685 (logrank test), Q value = 1

Table S20.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 132 4 0.1 - 303.1 (16.9)
subtype1 28 2 0.8 - 127.6 (26.2)
subtype2 58 1 0.1 - 104.5 (12.1)
subtype3 28 1 0.9 - 303.1 (14.8)
subtype4 18 0 0.7 - 110.5 (17.4)

Figure S16.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.029 (Kruskal-Wallis (anova)), Q value = 1

Table S21.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 132 48.8 (15.7)
subtype1 28 55.0 (12.1)
subtype2 58 49.1 (15.5)
subtype3 28 42.6 (17.6)
subtype4 18 47.8 (15.9)

Figure S17.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.588 (Fisher's exact test), Q value = 1

Table S22.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 75 57
subtype1 16 12
subtype2 34 24
subtype3 13 15
subtype4 12 6

Figure S18.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.996 (Fisher's exact test), Q value = 1

Table S23.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 9 114
subtype1 0 1 1 26
subtype2 1 2 5 48
subtype3 0 1 2 24
subtype4 0 1 1 16

Figure S19.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'RNAseq cHierClus subtypes' versus 'ETHNICITY'

P value = 0.0458 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 101
subtype1 1 20
subtype2 0 46
subtype3 0 21
subtype4 2 14

Figure S20.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S25.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 50 50 32
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.062 (logrank test), Q value = 1

Table S26.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 132 4 0.1 - 303.1 (16.9)
subtype1 50 4 0.9 - 303.1 (21.8)
subtype2 50 0 0.1 - 104.5 (13.6)
subtype3 32 0 0.7 - 110.5 (12.5)

Figure S21.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.899 (Kruskal-Wallis (anova)), Q value = 1

Table S27.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 132 48.8 (15.7)
subtype1 50 48.4 (16.9)
subtype2 50 48.3 (15.5)
subtype3 32 50.2 (14.7)

Figure S22.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.95 (Fisher's exact test), Q value = 1

Table S28.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 75 57
subtype1 28 22
subtype2 28 22
subtype3 19 13

Figure S23.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.774 (Fisher's exact test), Q value = 1

Table S29.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 9 114
subtype1 1 2 2 44
subtype2 0 2 3 43
subtype3 0 1 4 27

Figure S24.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

'MIRSEQ CNMF' versus 'ETHNICITY'

P value = 0.255 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 101
subtype1 1 39
subtype2 0 38
subtype3 2 24

Figure S25.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S31.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4
Number of samples 48 49 15 20
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.461 (logrank test), Q value = 1

Table S32.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 132 4 0.1 - 303.1 (16.9)
subtype1 48 3 0.6 - 303.1 (18.4)
subtype2 49 1 0.1 - 104.5 (13.1)
subtype3 15 0 0.7 - 86.9 (19.6)
subtype4 20 0 0.8 - 110.5 (17.0)

Figure S26.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.995 (Kruskal-Wallis (anova)), Q value = 1

Table S33.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 132 48.8 (15.7)
subtype1 48 48.1 (16.6)
subtype2 49 49.5 (15.9)
subtype3 15 48.9 (13.5)
subtype4 20 48.6 (16.1)

Figure S27.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.605 (Fisher's exact test), Q value = 1

Table S34.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 75 57
subtype1 24 24
subtype2 31 18
subtype3 8 7
subtype4 12 8

Figure S28.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.824 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 9 114
subtype1 0 2 2 43
subtype2 1 2 3 41
subtype3 0 0 1 14
subtype4 0 1 3 16

Figure S29.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

'MIRSEQ CHIERARCHICAL' versus 'ETHNICITY'

P value = 0.0675 (Fisher's exact test), Q value = 1

Table S36.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 101
subtype1 1 36
subtype2 0 39
subtype3 0 10
subtype4 2 16

Figure S30.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S37.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4 5
Number of samples 29 52 9 22 19
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.0961 (logrank test), Q value = 1

Table S38.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 131 4 0.1 - 303.1 (17.2)
subtype1 29 0 0.7 - 127.6 (21.4)
subtype2 52 1 0.1 - 110.5 (13.6)
subtype3 9 1 0.9 - 29.0 (2.9)
subtype4 22 1 0.9 - 107.5 (17.0)
subtype5 19 1 0.9 - 303.1 (23.5)

Figure S31.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.0667 (Kruskal-Wallis (anova)), Q value = 1

Table S39.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 131 48.7 (15.8)
subtype1 29 52.9 (12.5)
subtype2 52 49.2 (15.6)
subtype3 9 55.2 (14.5)
subtype4 22 44.8 (18.8)
subtype5 19 42.1 (15.5)

Figure S32.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.628 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 75 56
subtype1 19 10
subtype2 29 23
subtype3 4 5
subtype4 14 8
subtype5 9 10

Figure S33.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.634 (Fisher's exact test), Q value = 1

Table S41.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 9 113
subtype1 0 0 2 27
subtype2 0 3 4 44
subtype3 1 0 0 7
subtype4 0 1 1 19
subtype5 0 1 2 16

Figure S34.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

'MIRseq Mature CNMF subtypes' versus 'ETHNICITY'

P value = 0.117 (Fisher's exact test), Q value = 1

Table S42.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 100
subtype1 1 19
subtype2 0 44
subtype3 0 5
subtype4 0 17
subtype5 2 15

Figure S35.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'ETHNICITY'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S43.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4
Number of samples 63 37 15 16
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.71 (logrank test), Q value = 1

Table S44.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 131 4 0.1 - 303.1 (17.2)
subtype1 63 2 0.1 - 106.8 (14.2)
subtype2 37 2 0.9 - 303.1 (24.2)
subtype3 15 0 0.7 - 86.9 (19.6)
subtype4 16 0 0.8 - 110.5 (17.0)

Figure S36.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.231 (Kruskal-Wallis (anova)), Q value = 1

Table S45.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 131 48.7 (15.8)
subtype1 63 51.2 (15.1)
subtype2 37 44.2 (16.9)
subtype3 15 48.9 (13.5)
subtype4 16 49.1 (16.4)

Figure S37.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.514 (Fisher's exact test), Q value = 1

Table S46.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 75 56
subtype1 38 25
subtype2 18 19
subtype3 8 7
subtype4 11 5

Figure S38.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.988 (Fisher's exact test), Q value = 1

Table S47.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients AMERICAN INDIAN OR ALASKA NATIVE ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 5 9 113
subtype1 1 2 4 54
subtype2 0 2 3 31
subtype3 0 0 1 14
subtype4 0 1 1 14

Figure S39.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

'MIRseq Mature cHierClus subtypes' versus 'ETHNICITY'

P value = 0.135 (Fisher's exact test), Q value = 1

Table S48.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

nPatients HISPANIC OR LATINO NOT HISPANIC OR LATINO
ALL 3 100
subtype1 1 50
subtype2 0 28
subtype3 0 10
subtype4 2 12

Figure S40.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'ETHNICITY'

Methods & Data
Input
  • Cluster data file = PCPG-TP.mergedcluster.txt

  • Clinical data file = PCPG-TP.merged_data.txt

  • Number of patients = 132

  • Number of clustering approaches = 8

  • Number of selected clinical features = 5

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)