Correlation between aggregated molecular cancer subtypes and selected clinical features
Prostate Adenocarcinoma (Primary solid tumor)
17 October 2014  |  analyses__2014_10_17
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C16Q1W5J
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 10 different clustering approaches and 14 clinical features across 367 patients, 37 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 3 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes correlate to 'PATHOLOGY.T.STAGE',  'PATHOLOGY.N.STAGE',  'COMPLETENESS.OF.RESECTION',  'NUMBER.OF.LYMPH.NODES',  'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'GLEASON_SCORE'.

  • 4 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'PATHOLOGY.T.STAGE',  'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'PSA_RESULT_PREOP'.

  • CNMF clustering analysis on RPPA data identified 3 subtypes that correlate to 'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'GLEASON_SCORE'.

  • Consensus hierarchical clustering analysis on RPPA data identified 3 subtypes that correlate to 'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'GLEASON_SCORE'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 3 subtypes that do not correlate to any clinical features.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes correlate to 'PATHOLOGY.T.STAGE',  'NUMBER.OF.LYMPH.NODES',  'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'GLEASON_SCORE'.

  • 5 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'PATHOLOGY.T.STAGE',  'PATHOLOGY.N.STAGE',  'NUMBER.OF.LYMPH.NODES',  'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'GLEASON_SCORE'.

  • 4 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes correlate to 'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'GLEASON_SCORE'.

  • 6 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes correlate to 'PATHOLOGY.T.STAGE',  'PATHOLOGY.N.STAGE',  'NUMBER.OF.LYMPH.NODES',  'GLEASON_SCORE_COMBINED',  'GLEASON_SCORE_PRIMARY', and 'GLEASON_SCORE'.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 10 different clustering approaches and 14 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 37 significant findings detected.

Clinical
Features
Statistical
Tests
Copy
Number
Ratio
CNMF
subtypes
METHLYATION
CNMF
RPPA
CNMF
subtypes
RPPA
cHierClus
subtypes
RNAseq
CNMF
subtypes
RNAseq
cHierClus
subtypes
MIRSEQ
CNMF
MIRSEQ
CHIERARCHICAL
MIRseq
Mature
CNMF
subtypes
MIRseq
Mature
cHierClus
subtypes
Time to Death logrank test 0.95
(1.00)
0.391
(1.00)
100
(1.00)
100
(1.00)
0.441
(1.00)
0.439
(1.00)
0.208
(1.00)
0.913
(1.00)
0.753
(1.00)
0.847
(1.00)
AGE Kruskal-Wallis (anova) 0.0127
(1.00)
0.00487
(0.477)
0.075
(1.00)
0.0144
(1.00)
0.486
(1.00)
0.226
(1.00)
0.268
(1.00)
0.333
(1.00)
0.235
(1.00)
0.363
(1.00)
PATHOLOGY T STAGE Fisher's exact test 1e-05
(0.00131)
0.00014
(0.0169)
0.00501
(0.481)
0.0163
(1.00)
0.00314
(0.323)
0.0201
(1.00)
0.00048
(0.0552)
3e-05
(0.00375)
0.0465
(1.00)
0.00209
(0.222)
PATHOLOGY N STAGE Fisher's exact test 0.00145
(0.155)
0.241
(1.00)
0.0544
(1.00)
0.0159
(1.00)
0.127
(1.00)
0.0377
(1.00)
0.00324
(0.33)
0.00091
(0.101)
0.392
(1.00)
0.00051
(0.0581)
HISTOLOGICAL TYPE Fisher's exact test 0.586
(1.00)
0.509
(1.00)
1
(1.00)
0.337
(1.00)
0.683
(1.00)
0.94
(1.00)
0.0696
(1.00)
0.49
(1.00)
0.0582
(1.00)
0.148
(1.00)
COMPLETENESS OF RESECTION Fisher's exact test 0.00067
(0.0757)
0.21
(1.00)
0.0246
(1.00)
0.00491
(0.477)
0.446
(1.00)
0.528
(1.00)
0.288
(1.00)
0.0486
(1.00)
0.0392
(1.00)
0.0355
(1.00)
NUMBER OF LYMPH NODES Kruskal-Wallis (anova) 0.000349
(0.0408)
0.233
(1.00)
0.0381
(1.00)
0.0119
(1.00)
0.104
(1.00)
0.0268
(1.00)
0.00216
(0.227)
0.000816
(0.0914)
0.399
(1.00)
9.93e-05
(0.0121)
GLEASON SCORE COMBINED Kruskal-Wallis (anova) 3.93e-13
(5.43e-11)
0.00227
(0.236)
6.61e-05
(0.00819)
2.96e-05
(0.00373)
0.0476
(1.00)
0.0215
(1.00)
2.91e-06
(0.000395)
6.91e-08
(9.46e-06)
0.0012
(0.129)
0.000367
(0.0426)
GLEASON SCORE PRIMARY Kruskal-Wallis (anova) 3.13e-13
(4.35e-11)
0.00028
(0.0331)
1.13e-05
(0.00147)
8.3e-06
(0.0011)
0.00645
(0.6)
0.00463
(0.459)
6.44e-06
(0.000856)
2.31e-05
(0.00296)
0.00105
(0.114)
0.000278
(0.0331)
GLEASON SCORE SECONDARY Kruskal-Wallis (anova) 0.00563
(0.529)
0.714
(1.00)
0.381
(1.00)
0.133
(1.00)
0.162
(1.00)
0.262
(1.00)
0.0237
(1.00)
0.0112
(0.984)
0.0799
(1.00)
0.121
(1.00)
GLEASON SCORE Kruskal-Wallis (anova) 2.77e-16
(3.88e-14)
0.00325
(0.33)
2.81e-05
(0.00357)
4.5e-06
(0.000603)
0.00798
(0.718)
0.00552
(0.525)
1.31e-05
(0.00169)
3.13e-06
(0.000422)
0.000917
(0.101)
0.000186
(0.0223)
PSA RESULT PREOP Kruskal-Wallis (anova) 0.00781
(0.714)
7.45e-05
(0.00917)
0.0455
(1.00)
0.0308
(1.00)
0.00327
(0.33)
0.00776
(0.714)
0.0607
(1.00)
0.321
(1.00)
0.432
(1.00)
0.0701
(1.00)
PSA VALUE Kruskal-Wallis (anova) 0.47
(1.00)
0.51
(1.00)
0.193
(1.00)
0.494
(1.00)
0.114
(1.00)
0.31
(1.00)
0.0163
(1.00)
0.379
(1.00)
0.252
(1.00)
0.379
(1.00)
RACE Fisher's exact test 0.565
(1.00)
0.361
(1.00)
0.0266
(1.00)
0.00843
(0.75)
0.0702
(1.00)
0.0656
(1.00)
0.218
(1.00)
0.706
(1.00)
0.806
(1.00)
0.803
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 207 88 68
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.95 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 361 6 0.3 - 151.4 (23.9)
subtype1 206 3 0.7 - 151.4 (21.9)
subtype2 87 2 0.8 - 115.9 (26.5)
subtype3 68 1 0.3 - 94.7 (25.3)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.0127 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 355 60.8 (7.0)
subtype1 202 60.2 (7.0)
subtype2 87 62.7 (5.9)
subtype3 66 60.2 (7.7)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 1e-05 (Fisher's exact test), Q value = 0.0013

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 150 206 5
subtype1 102 101 2
subtype2 12 74 2
subtype3 36 31 1

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.00145 (Fisher's exact test), Q value = 0.16

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 263 44
subtype1 152 15
subtype2 62 22
subtype3 49 7

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'Copy Number Ratio CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.586 (Fisher's exact test), Q value = 1

Table S6.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 13 350
subtype1 8 199
subtype2 4 84
subtype3 1 67

Figure S5.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'Copy Number Ratio CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.00067 (Fisher's exact test), Q value = 0.076

Table S7.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 243 90 5 11
subtype1 156 35 3 5
subtype2 46 36 1 3
subtype3 41 19 1 3

Figure S6.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'Copy Number Ratio CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.000349 (Kruskal-Wallis (anova)), Q value = 0.041

Table S8.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 303 0.3 (1.3)
subtype1 165 0.2 (1.2)
subtype2 82 0.7 (1.7)
subtype3 56 0.1 (0.3)

Figure S7.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'Copy Number Ratio CNMF subtypes' versus 'GLEASON_SCORE_COMBINED'

P value = 3.93e-13 (Kruskal-Wallis (anova)), Q value = 5.4e-11

Table S9.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 363 7.4 (0.9)
subtype1 207 7.2 (0.8)
subtype2 88 8.1 (0.9)
subtype3 68 7.3 (0.8)

Figure S8.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'Copy Number Ratio CNMF subtypes' versus 'GLEASON_SCORE_PRIMARY'

P value = 3.13e-13 (Kruskal-Wallis (anova)), Q value = 4.4e-11

Table S10.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 363 3.6 (0.6)
subtype1 207 3.5 (0.6)
subtype2 88 4.0 (0.6)
subtype3 68 3.5 (0.6)

Figure S9.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'Copy Number Ratio CNMF subtypes' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.00563 (Kruskal-Wallis (anova)), Q value = 0.53

Table S11.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 363 3.9 (0.6)
subtype1 207 3.8 (0.6)
subtype2 88 4.0 (0.7)
subtype3 68 3.9 (0.6)

Figure S10.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'Copy Number Ratio CNMF subtypes' versus 'GLEASON_SCORE'

P value = 2.77e-16 (Kruskal-Wallis (anova)), Q value = 3.9e-14

Table S12.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 363 7.5 (1.0)
subtype1 207 7.2 (0.8)
subtype2 88 8.3 (0.9)
subtype3 68 7.4 (0.8)

Figure S11.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

'Copy Number Ratio CNMF subtypes' versus 'PSA_RESULT_PREOP'

P value = 0.00781 (Kruskal-Wallis (anova)), Q value = 0.71

Table S13.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 361 10.5 (11.3)
subtype1 205 9.7 (12.3)
subtype2 88 12.8 (11.3)
subtype3 68 9.8 (7.1)

Figure S12.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'Copy Number Ratio CNMF subtypes' versus 'PSA_VALUE'

P value = 0.47 (Kruskal-Wallis (anova)), Q value = 1

Table S14.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 312 1.0 (3.5)
subtype1 181 0.8 (2.6)
subtype2 74 1.7 (5.4)
subtype3 57 0.7 (2.5)

Figure S13.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.565 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 7 146
subtype1 2 3 90
subtype2 0 1 29
subtype3 0 3 27

Figure S14.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #14: 'RACE'

Clustering Approach #2: 'METHLYATION CNMF'

Table S16.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4
Number of samples 109 102 104 30
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.391 (logrank test), Q value = 1

Table S17.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 343 5 0.3 - 151.4 (23.0)
subtype1 109 0 1.1 - 94.7 (20.5)
subtype2 102 3 0.3 - 106.8 (27.0)
subtype3 102 2 1.0 - 114.6 (22.2)
subtype4 30 0 1.6 - 151.4 (25.6)

Figure S15.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.00487 (Kruskal-Wallis (anova)), Q value = 0.48

Table S18.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 337 60.7 (6.9)
subtype1 105 59.2 (6.8)
subtype2 100 61.9 (6.9)
subtype3 103 60.5 (6.8)
subtype4 29 63.0 (6.7)

Figure S16.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.00014 (Fisher's exact test), Q value = 0.017

Table S19.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 145 193 5
subtype1 58 49 0
subtype2 42 57 3
subtype3 42 60 2
subtype4 3 27 0

Figure S17.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'METHLYATION CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.241 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 249 40
subtype1 78 8
subtype2 76 12
subtype3 73 13
subtype4 22 7

Figure S18.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'METHLYATION CNMF' versus 'HISTOLOGICAL.TYPE'

P value = 0.509 (Fisher's exact test), Q value = 1

Table S21.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 14 331
subtype1 5 104
subtype2 2 100
subtype3 5 99
subtype4 2 28

Figure S19.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'METHLYATION CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.21 (Fisher's exact test), Q value = 1

Table S22.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 232 83 5 11
subtype1 78 21 1 4
subtype2 57 35 2 3
subtype3 77 19 2 3
subtype4 20 8 0 1

Figure S20.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'METHLYATION CNMF' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.233 (Kruskal-Wallis (anova)), Q value = 1

Table S23.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 285 0.3 (1.1)
subtype1 84 0.1 (0.5)
subtype2 86 0.2 (0.5)
subtype3 86 0.5 (1.9)
subtype4 29 0.4 (0.8)

Figure S21.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'METHLYATION CNMF' versus 'GLEASON_SCORE_COMBINED'

P value = 0.00227 (Kruskal-Wallis (anova)), Q value = 0.24

Table S24.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 345 7.4 (0.9)
subtype1 109 7.2 (0.8)
subtype2 102 7.6 (1.0)
subtype3 104 7.4 (0.9)
subtype4 30 7.7 (0.9)

Figure S22.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'METHLYATION CNMF' versus 'GLEASON_SCORE_PRIMARY'

P value = 0.00028 (Kruskal-Wallis (anova)), Q value = 0.033

Table S25.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 345 3.6 (0.6)
subtype1 109 3.4 (0.5)
subtype2 102 3.7 (0.6)
subtype3 104 3.5 (0.6)
subtype4 30 3.8 (0.5)

Figure S23.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'METHLYATION CNMF' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.714 (Kruskal-Wallis (anova)), Q value = 1

Table S26.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 345 3.9 (0.7)
subtype1 109 3.8 (0.6)
subtype2 102 3.9 (0.7)
subtype3 104 3.8 (0.6)
subtype4 30 3.9 (0.7)

Figure S24.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'METHLYATION CNMF' versus 'GLEASON_SCORE'

P value = 0.00325 (Kruskal-Wallis (anova)), Q value = 0.33

Table S27.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 345 7.5 (0.9)
subtype1 109 7.2 (0.8)
subtype2 102 7.7 (1.0)
subtype3 104 7.5 (0.9)
subtype4 30 7.8 (0.9)

Figure S25.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #11: 'GLEASON_SCORE'

'METHLYATION CNMF' versus 'PSA_RESULT_PREOP'

P value = 7.45e-05 (Kruskal-Wallis (anova)), Q value = 0.0092

Table S28.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 343 10.8 (11.7)
subtype1 109 8.1 (8.4)
subtype2 102 14.7 (16.5)
subtype3 102 9.4 (7.9)
subtype4 30 11.6 (9.4)

Figure S26.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'METHLYATION CNMF' versus 'PSA_VALUE'

P value = 0.51 (Kruskal-Wallis (anova)), Q value = 1

Table S29.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 294 1.0 (3.5)
subtype1 96 0.3 (1.3)
subtype2 80 1.3 (3.7)
subtype3 93 1.5 (5.0)
subtype4 25 0.5 (1.0)

Figure S27.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #13: 'PSA_VALUE'

'METHLYATION CNMF' versus 'RACE'

P value = 0.361 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 7 147
subtype1 1 2 47
subtype2 0 1 38
subtype3 0 3 51
subtype4 1 1 11

Figure S28.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #14: 'RACE'

Clustering Approach #3: 'RPPA CNMF subtypes'

Table S31.  Description of clustering approach #3: 'RPPA CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 42 55 62
'RPPA CNMF subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S32.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 158 1 0.3 - 94.0 (27.0)
subtype1 42 0 0.7 - 64.5 (25.0)
subtype2 55 0 0.3 - 88.2 (27.0)
subtype3 61 1 0.8 - 94.0 (30.5)

Figure S29.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA CNMF subtypes' versus 'AGE'

P value = 0.075 (Kruskal-Wallis (anova)), Q value = 1

Table S33.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 157 60.6 (7.1)
subtype1 42 62.7 (6.3)
subtype2 54 59.2 (7.8)
subtype3 61 60.3 (6.7)

Figure S30.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.00501 (Fisher's exact test), Q value = 0.48

Table S34.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 58 95 5
subtype1 18 23 0
subtype2 27 27 1
subtype3 13 45 4

Figure S31.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'RPPA CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0544 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 123 17
subtype1 38 4
subtype2 43 2
subtype3 42 11

Figure S32.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'RPPA CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 1 (Fisher's exact test), Q value = 1

Table S36.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 2 157
subtype1 0 42
subtype2 1 54
subtype3 1 61

Figure S33.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RPPA CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.0246 (Fisher's exact test), Q value = 1

Table S37.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 112 33 1 4
subtype1 36 4 0 1
subtype2 40 9 0 2
subtype3 36 20 1 1

Figure S34.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'RPPA CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.0381 (Kruskal-Wallis (anova)), Q value = 1

Table S38.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 140 0.2 (0.7)
subtype1 42 0.1 (0.5)
subtype2 45 0.1 (0.3)
subtype3 53 0.4 (1.1)

Figure S35.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'RPPA CNMF subtypes' versus 'GLEASON_SCORE_COMBINED'

P value = 6.61e-05 (Kruskal-Wallis (anova)), Q value = 0.0082

Table S39.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 159 7.4 (0.9)
subtype1 42 7.1 (0.5)
subtype2 55 7.3 (0.8)
subtype3 62 7.8 (1.0)

Figure S36.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'RPPA CNMF subtypes' versus 'GLEASON_SCORE_PRIMARY'

P value = 1.13e-05 (Kruskal-Wallis (anova)), Q value = 0.0015

Table S40.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 159 3.5 (0.6)
subtype1 42 3.3 (0.5)
subtype2 55 3.4 (0.5)
subtype3 62 3.8 (0.6)

Figure S37.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'RPPA CNMF subtypes' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.381 (Kruskal-Wallis (anova)), Q value = 1

Table S41.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 159 3.9 (0.7)
subtype1 42 3.7 (0.5)
subtype2 55 3.9 (0.7)
subtype3 62 4.0 (0.8)

Figure S38.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'RPPA CNMF subtypes' versus 'GLEASON_SCORE'

P value = 2.81e-05 (Kruskal-Wallis (anova)), Q value = 0.0036

Table S42.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 159 7.5 (0.9)
subtype1 42 7.1 (0.6)
subtype2 55 7.3 (0.8)
subtype3 62 7.9 (1.0)

Figure S39.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

'RPPA CNMF subtypes' versus 'PSA_RESULT_PREOP'

P value = 0.0455 (Kruskal-Wallis (anova)), Q value = 1

Table S43.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 157 11.2 (11.2)
subtype1 41 8.3 (5.0)
subtype2 54 10.5 (13.4)
subtype3 62 13.9 (11.6)

Figure S40.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'RPPA CNMF subtypes' versus 'PSA_VALUE'

P value = 0.193 (Kruskal-Wallis (anova)), Q value = 1

Table S44.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 144 1.4 (4.4)
subtype1 41 1.0 (2.8)
subtype2 49 0.8 (3.4)
subtype3 54 2.3 (6.0)

Figure S41.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

'RPPA CNMF subtypes' versus 'RACE'

P value = 0.0266 (Fisher's exact test), Q value = 1

Table S45.  Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 6 121
subtype1 0 0 39
subtype2 2 1 42
subtype3 0 5 40

Figure S42.  Get High-res Image Clustering Approach #3: 'RPPA CNMF subtypes' versus Clinical Feature #14: 'RACE'

Clustering Approach #4: 'RPPA cHierClus subtypes'

Table S46.  Description of clustering approach #4: 'RPPA cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 48 65 46
'RPPA cHierClus subtypes' versus 'Time to Death'

P value = 100 (logrank test), Q value = 1

Table S47.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 158 1 0.3 - 94.0 (27.0)
subtype1 48 0 0.7 - 64.5 (20.1)
subtype2 64 1 0.8 - 94.0 (27.9)
subtype3 46 0 0.3 - 88.2 (29.4)

Figure S43.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RPPA cHierClus subtypes' versus 'AGE'

P value = 0.0144 (Kruskal-Wallis (anova)), Q value = 1

Table S48.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 157 60.6 (7.1)
subtype1 48 63.0 (6.2)
subtype2 64 60.4 (6.7)
subtype3 45 58.2 (7.8)

Figure S44.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0163 (Fisher's exact test), Q value = 1

Table S49.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 58 95 5
subtype1 22 25 0
subtype2 15 46 4
subtype3 21 24 1

Figure S45.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'RPPA cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0159 (Fisher's exact test), Q value = 1

Table S50.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 123 17
subtype1 43 4
subtype2 43 12
subtype3 37 1

Figure S46.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'RPPA cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.337 (Fisher's exact test), Q value = 1

Table S51.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 2 157
subtype1 0 48
subtype2 2 63
subtype3 0 46

Figure S47.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RPPA cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.00491 (Fisher's exact test), Q value = 0.48

Table S52.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 112 33 1 4
subtype1 43 4 0 0
subtype2 36 20 1 3
subtype3 33 9 0 1

Figure S48.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'RPPA cHierClus subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.0119 (Kruskal-Wallis (anova)), Q value = 1

Table S53.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 140 0.2 (0.7)
subtype1 47 0.1 (0.5)
subtype2 55 0.4 (1.1)
subtype3 38 0.0 (0.2)

Figure S49.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'RPPA cHierClus subtypes' versus 'GLEASON_SCORE_COMBINED'

P value = 2.96e-05 (Kruskal-Wallis (anova)), Q value = 0.0037

Table S54.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 159 7.4 (0.9)
subtype1 48 7.0 (0.5)
subtype2 65 7.8 (1.0)
subtype3 46 7.3 (0.9)

Figure S50.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'RPPA cHierClus subtypes' versus 'GLEASON_SCORE_PRIMARY'

P value = 8.3e-06 (Kruskal-Wallis (anova)), Q value = 0.0011

Table S55.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 159 3.5 (0.6)
subtype1 48 3.4 (0.5)
subtype2 65 3.8 (0.6)
subtype3 46 3.4 (0.5)

Figure S51.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'RPPA cHierClus subtypes' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.133 (Kruskal-Wallis (anova)), Q value = 1

Table S56.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 159 3.9 (0.7)
subtype1 48 3.7 (0.6)
subtype2 65 4.0 (0.8)
subtype3 46 3.9 (0.6)

Figure S52.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'RPPA cHierClus subtypes' versus 'GLEASON_SCORE'

P value = 4.5e-06 (Kruskal-Wallis (anova)), Q value = 6e-04

Table S57.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 159 7.5 (0.9)
subtype1 48 7.1 (0.6)
subtype2 65 7.9 (1.0)
subtype3 46 7.3 (0.9)

Figure S53.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

'RPPA cHierClus subtypes' versus 'PSA_RESULT_PREOP'

P value = 0.0308 (Kruskal-Wallis (anova)), Q value = 1

Table S58.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 157 11.2 (11.2)
subtype1 47 8.9 (6.4)
subtype2 65 14.0 (12.2)
subtype3 45 9.7 (12.9)

Figure S54.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'RPPA cHierClus subtypes' versus 'PSA_VALUE'

P value = 0.494 (Kruskal-Wallis (anova)), Q value = 1

Table S59.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 144 1.4 (4.4)
subtype1 47 1.4 (3.7)
subtype2 56 2.0 (5.7)
subtype3 41 0.6 (3.1)

Figure S55.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #13: 'PSA_VALUE'

'RPPA cHierClus subtypes' versus 'RACE'

P value = 0.00843 (Fisher's exact test), Q value = 0.75

Table S60.  Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 6 121
subtype1 0 0 45
subtype2 0 5 40
subtype3 2 1 36

Figure S56.  Get High-res Image Clustering Approach #4: 'RPPA cHierClus subtypes' versus Clinical Feature #14: 'RACE'

Clustering Approach #5: 'RNAseq CNMF subtypes'

Table S61.  Description of clustering approach #5: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 107 123 130
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.441 (logrank test), Q value = 1

Table S62.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 358 6 0.3 - 151.4 (23.9)
subtype1 107 3 0.7 - 94.7 (24.0)
subtype2 123 2 0.3 - 106.8 (25.5)
subtype3 128 1 0.8 - 151.4 (22.2)

Figure S57.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.486 (Kruskal-Wallis (anova)), Q value = 1

Table S63.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 352 60.7 (6.9)
subtype1 104 60.0 (7.2)
subtype2 119 61.1 (6.9)
subtype3 129 61.0 (6.8)

Figure S58.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.00314 (Fisher's exact test), Q value = 0.32

Table S64.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 147 206 5
subtype1 52 52 1
subtype2 57 63 3
subtype3 38 91 1

Figure S59.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'RNAseq CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.127 (Fisher's exact test), Q value = 1

Table S65.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 260 45
subtype1 80 8
subtype2 88 15
subtype3 92 22

Figure S60.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'RNAseq CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.683 (Fisher's exact test), Q value = 1

Table S66.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 13 347
subtype1 4 103
subtype2 3 120
subtype3 6 124

Figure S61.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RNAseq CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.446 (Fisher's exact test), Q value = 1

Table S67.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 242 89 5 10
subtype1 77 21 0 3
subtype2 77 37 2 3
subtype3 88 31 3 4

Figure S62.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'RNAseq CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.104 (Kruskal-Wallis (anova)), Q value = 1

Table S68.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 301 0.3 (1.3)
subtype1 86 0.1 (0.5)
subtype2 101 0.3 (0.9)
subtype3 114 0.6 (1.9)

Figure S63.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'RNAseq CNMF subtypes' versus 'GLEASON_SCORE_COMBINED'

P value = 0.0476 (Kruskal-Wallis (anova)), Q value = 1

Table S69.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 360 7.4 (0.9)
subtype1 107 7.3 (0.8)
subtype2 123 7.4 (1.0)
subtype3 130 7.6 (0.9)

Figure S64.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'RNAseq CNMF subtypes' versus 'GLEASON_SCORE_PRIMARY'

P value = 0.00645 (Kruskal-Wallis (anova)), Q value = 0.6

Table S70.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 360 3.6 (0.6)
subtype1 107 3.4 (0.6)
subtype2 123 3.7 (0.6)
subtype3 130 3.7 (0.6)

Figure S65.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'RNAseq CNMF subtypes' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.162 (Kruskal-Wallis (anova)), Q value = 1

Table S71.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 360 3.8 (0.6)
subtype1 107 3.8 (0.6)
subtype2 123 3.8 (0.7)
subtype3 130 3.9 (0.7)

Figure S66.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'RNAseq CNMF subtypes' versus 'GLEASON_SCORE'

P value = 0.00798 (Kruskal-Wallis (anova)), Q value = 0.72

Table S72.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 360 7.5 (1.0)
subtype1 107 7.3 (0.8)
subtype2 123 7.6 (1.0)
subtype3 130 7.7 (0.9)

Figure S67.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

'RNAseq CNMF subtypes' versus 'PSA_RESULT_PREOP'

P value = 0.00327 (Kruskal-Wallis (anova)), Q value = 0.33

Table S73.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 358 10.5 (11.3)
subtype1 107 8.9 (12.7)
subtype2 123 12.2 (11.6)
subtype3 128 10.3 (9.6)

Figure S68.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'RNAseq CNMF subtypes' versus 'PSA_VALUE'

P value = 0.114 (Kruskal-Wallis (anova)), Q value = 1

Table S74.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 310 0.9 (3.4)
subtype1 96 0.6 (2.1)
subtype2 102 0.7 (2.6)
subtype3 112 1.5 (4.7)

Figure S69.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.0702 (Fisher's exact test), Q value = 1

Table S75.  Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 7 147
subtype1 2 0 52
subtype2 0 3 40
subtype3 0 4 55

Figure S70.  Get High-res Image Clustering Approach #5: 'RNAseq CNMF subtypes' versus Clinical Feature #14: 'RACE'

Clustering Approach #6: 'RNAseq cHierClus subtypes'

Table S76.  Description of clustering approach #6: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3
Number of samples 108 128 124
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.439 (logrank test), Q value = 1

Table S77.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 358 6 0.3 - 151.4 (23.9)
subtype1 108 3 0.3 - 94.7 (24.2)
subtype2 128 1 0.8 - 106.8 (25.4)
subtype3 122 2 1.0 - 151.4 (22.7)

Figure S71.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.226 (Kruskal-Wallis (anova)), Q value = 1

Table S78.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 352 60.7 (6.9)
subtype1 103 60.7 (6.9)
subtype2 126 61.5 (7.2)
subtype3 123 59.9 (6.6)

Figure S72.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0201 (Fisher's exact test), Q value = 1

Table S79.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 147 206 5
subtype1 55 50 1
subtype2 52 73 3
subtype3 40 83 1

Figure S73.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'RNAseq cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.0377 (Fisher's exact test), Q value = 1

Table S80.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 260 45
subtype1 82 8
subtype2 95 14
subtype3 83 23

Figure S74.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'RNAseq cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.94 (Fisher's exact test), Q value = 1

Table S81.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 13 347
subtype1 4 104
subtype2 4 124
subtype3 5 119

Figure S75.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'RNAseq cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.528 (Fisher's exact test), Q value = 1

Table S82.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 242 89 5 10
subtype1 73 25 0 2
subtype2 86 35 3 2
subtype3 83 29 2 6

Figure S76.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'RNAseq cHierClus subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.0268 (Kruskal-Wallis (anova)), Q value = 1

Table S83.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 301 0.3 (1.3)
subtype1 87 0.1 (0.5)
subtype2 108 0.2 (0.8)
subtype3 106 0.7 (2.0)

Figure S77.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'RNAseq cHierClus subtypes' versus 'GLEASON_SCORE_COMBINED'

P value = 0.0215 (Kruskal-Wallis (anova)), Q value = 1

Table S84.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 360 7.4 (0.9)
subtype1 108 7.2 (0.8)
subtype2 128 7.5 (1.0)
subtype3 124 7.5 (1.0)

Figure S78.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'RNAseq cHierClus subtypes' versus 'GLEASON_SCORE_PRIMARY'

P value = 0.00463 (Kruskal-Wallis (anova)), Q value = 0.46

Table S85.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 360 3.6 (0.6)
subtype1 108 3.5 (0.6)
subtype2 128 3.7 (0.6)
subtype3 124 3.6 (0.6)

Figure S79.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'RNAseq cHierClus subtypes' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.262 (Kruskal-Wallis (anova)), Q value = 1

Table S86.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 360 3.8 (0.6)
subtype1 108 3.8 (0.6)
subtype2 128 3.8 (0.7)
subtype3 124 3.9 (0.7)

Figure S80.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'RNAseq cHierClus subtypes' versus 'GLEASON_SCORE'

P value = 0.00552 (Kruskal-Wallis (anova)), Q value = 0.52

Table S87.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 360 7.5 (1.0)
subtype1 108 7.3 (0.8)
subtype2 128 7.6 (1.0)
subtype3 124 7.6 (1.0)

Figure S81.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

'RNAseq cHierClus subtypes' versus 'PSA_RESULT_PREOP'

P value = 0.00776 (Kruskal-Wallis (anova)), Q value = 0.71

Table S88.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 358 10.5 (11.3)
subtype1 108 9.2 (12.9)
subtype2 128 12.3 (12.4)
subtype3 122 9.8 (8.1)

Figure S82.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'RNAseq cHierClus subtypes' versus 'PSA_VALUE'

P value = 0.31 (Kruskal-Wallis (anova)), Q value = 1

Table S89.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 310 0.9 (3.4)
subtype1 93 0.6 (2.1)
subtype2 108 0.8 (2.6)
subtype3 109 1.4 (4.7)

Figure S83.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #13: 'PSA_VALUE'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.0656 (Fisher's exact test), Q value = 1

Table S90.  Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 7 147
subtype1 1 0 49
subtype2 0 5 42
subtype3 1 2 56

Figure S84.  Get High-res Image Clustering Approach #6: 'RNAseq cHierClus subtypes' versus Clinical Feature #14: 'RACE'

Clustering Approach #7: 'MIRSEQ CNMF'

Table S91.  Description of clustering approach #7: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 115 116 132
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.208 (logrank test), Q value = 1

Table S92.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 361 6 0.3 - 151.4 (23.9)
subtype1 115 3 1.0 - 115.9 (22.4)
subtype2 115 0 0.3 - 90.5 (24.6)
subtype3 131 3 0.8 - 151.4 (24.0)

Figure S85.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.268 (Kruskal-Wallis (anova)), Q value = 1

Table S93.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 355 60.8 (7.0)
subtype1 112 60.4 (6.5)
subtype2 113 60.3 (7.4)
subtype3 130 61.7 (7.0)

Figure S86.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.T.STAGE'

P value = 0.00048 (Fisher's exact test), Q value = 0.055

Table S94.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 149 208 4
subtype1 47 66 0
subtype2 60 52 4
subtype3 42 90 0

Figure S87.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'MIRSEQ CNMF' versus 'PATHOLOGY.N.STAGE'

P value = 0.00324 (Fisher's exact test), Q value = 0.33

Table S95.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 263 44
subtype1 83 13
subtype2 86 5
subtype3 94 26

Figure S88.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'MIRSEQ CNMF' versus 'HISTOLOGICAL.TYPE'

P value = 0.0696 (Fisher's exact test), Q value = 1

Table S96.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 14 349
subtype1 7 108
subtype2 1 115
subtype3 6 126

Figure S89.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'MIRSEQ CNMF' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.288 (Fisher's exact test), Q value = 1

Table S97.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 242 91 5 11
subtype1 78 28 0 4
subtype2 82 23 3 2
subtype3 82 40 2 5

Figure S90.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'MIRSEQ CNMF' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.00216 (Kruskal-Wallis (anova)), Q value = 0.23

Table S98.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 303 0.3 (1.3)
subtype1 93 0.3 (1.3)
subtype2 91 0.1 (0.2)
subtype3 119 0.6 (1.7)

Figure S91.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'MIRSEQ CNMF' versus 'GLEASON_SCORE_COMBINED'

P value = 2.91e-06 (Kruskal-Wallis (anova)), Q value = 4e-04

Table S99.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 363 7.4 (0.9)
subtype1 115 7.4 (0.9)
subtype2 116 7.2 (0.8)
subtype3 132 7.7 (0.9)

Figure S92.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'MIRSEQ CNMF' versus 'GLEASON_SCORE_PRIMARY'

P value = 6.44e-06 (Kruskal-Wallis (anova)), Q value = 0.00086

Table S100.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 363 3.6 (0.6)
subtype1 115 3.5 (0.6)
subtype2 116 3.5 (0.6)
subtype3 132 3.8 (0.6)

Figure S93.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'MIRSEQ CNMF' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.0237 (Kruskal-Wallis (anova)), Q value = 1

Table S101.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 363 3.9 (0.6)
subtype1 115 3.9 (0.6)
subtype2 116 3.7 (0.6)
subtype3 132 3.9 (0.7)

Figure S94.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'MIRSEQ CNMF' versus 'GLEASON_SCORE'

P value = 1.31e-05 (Kruskal-Wallis (anova)), Q value = 0.0017

Table S102.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 363 7.5 (0.9)
subtype1 115 7.5 (0.9)
subtype2 116 7.3 (0.9)
subtype3 132 7.8 (0.9)

Figure S95.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #11: 'GLEASON_SCORE'

'MIRSEQ CNMF' versus 'PSA_RESULT_PREOP'

P value = 0.0607 (Kruskal-Wallis (anova)), Q value = 1

Table S103.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 361 10.6 (11.4)
subtype1 114 10.1 (13.5)
subtype2 115 9.7 (9.6)
subtype3 132 11.9 (10.9)

Figure S96.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'MIRSEQ CNMF' versus 'PSA_VALUE'

P value = 0.0163 (Kruskal-Wallis (anova)), Q value = 1

Table S104.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 314 1.0 (3.5)
subtype1 104 1.3 (4.6)
subtype2 98 0.1 (0.3)
subtype3 112 1.4 (3.7)

Figure S97.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #13: 'PSA_VALUE'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.218 (Fisher's exact test), Q value = 1

Table S105.  Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 7 146
subtype1 1 0 39
subtype2 1 3 69
subtype3 0 4 38

Figure S98.  Get High-res Image Clustering Approach #7: 'MIRSEQ CNMF' versus Clinical Feature #14: 'RACE'

Clustering Approach #8: 'MIRSEQ CHIERARCHICAL'

Table S106.  Description of clustering approach #8: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4 5
Number of samples 112 72 46 80 53
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.913 (logrank test), Q value = 1

Table S107.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 361 6 0.3 - 151.4 (23.9)
subtype1 111 2 1.0 - 115.9 (27.2)
subtype2 72 1 0.3 - 90.5 (28.0)
subtype3 46 1 1.0 - 114.6 (22.2)
subtype4 80 1 0.8 - 151.4 (25.2)
subtype5 52 1 0.7 - 107.0 (14.8)

Figure S99.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.333 (Kruskal-Wallis (anova)), Q value = 1

Table S108.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 355 60.8 (7.0)
subtype1 109 60.3 (6.8)
subtype2 70 60.6 (7.0)
subtype3 46 60.3 (6.2)
subtype4 78 62.4 (7.1)
subtype5 52 60.4 (7.6)

Figure S100.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.T.STAGE'

P value = 3e-05 (Fisher's exact test), Q value = 0.0037

Table S109.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 149 208 4
subtype1 47 63 0
subtype2 37 31 4
subtype3 17 29 0
subtype4 18 62 0
subtype5 30 23 0

Figure S101.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'PATHOLOGY.N.STAGE'

P value = 0.00091 (Fisher's exact test), Q value = 0.1

Table S110.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 263 44
subtype1 82 13
subtype2 55 2
subtype3 33 7
subtype4 54 20
subtype5 39 2

Figure S102.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'MIRSEQ CHIERARCHICAL' versus 'HISTOLOGICAL.TYPE'

P value = 0.49 (Fisher's exact test), Q value = 1

Table S111.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 14 349
subtype1 6 106
subtype2 1 71
subtype3 1 45
subtype4 5 75
subtype5 1 52

Figure S103.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'MIRSEQ CHIERARCHICAL' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.0486 (Fisher's exact test), Q value = 1

Table S112.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 242 91 5 11
subtype1 82 24 0 4
subtype2 46 21 1 2
subtype3 32 10 0 2
subtype4 44 30 2 2
subtype5 38 6 2 1

Figure S104.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'MIRSEQ CHIERARCHICAL' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.000816 (Kruskal-Wallis (anova)), Q value = 0.091

Table S113.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 303 0.3 (1.3)
subtype1 92 0.3 (0.8)
subtype2 56 0.0 (0.2)
subtype3 40 0.2 (0.6)
subtype4 74 0.9 (2.4)
subtype5 41 0.1 (0.3)

Figure S105.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'MIRSEQ CHIERARCHICAL' versus 'GLEASON_SCORE_COMBINED'

P value = 6.91e-08 (Kruskal-Wallis (anova)), Q value = 9.5e-06

Table S114.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 363 7.4 (0.9)
subtype1 112 7.4 (0.9)
subtype2 72 7.2 (0.9)
subtype3 46 7.5 (0.9)
subtype4 80 8.0 (0.9)
subtype5 53 7.2 (0.7)

Figure S106.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'MIRSEQ CHIERARCHICAL' versus 'GLEASON_SCORE_PRIMARY'

P value = 2.31e-05 (Kruskal-Wallis (anova)), Q value = 0.003

Table S115.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 363 3.6 (0.6)
subtype1 112 3.5 (0.6)
subtype2 72 3.5 (0.6)
subtype3 46 3.6 (0.6)
subtype4 80 3.9 (0.6)
subtype5 53 3.5 (0.5)

Figure S107.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'MIRSEQ CHIERARCHICAL' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.0112 (Kruskal-Wallis (anova)), Q value = 0.98

Table S116.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 363 3.9 (0.6)
subtype1 112 3.9 (0.6)
subtype2 72 3.7 (0.6)
subtype3 46 3.9 (0.7)
subtype4 80 4.0 (0.7)
subtype5 53 3.7 (0.6)

Figure S108.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'MIRSEQ CHIERARCHICAL' versus 'GLEASON_SCORE'

P value = 3.13e-06 (Kruskal-Wallis (anova)), Q value = 0.00042

Table S117.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 363 7.5 (0.9)
subtype1 112 7.4 (0.9)
subtype2 72 7.3 (1.0)
subtype3 46 7.5 (0.9)
subtype4 80 8.0 (1.0)
subtype5 53 7.3 (0.7)

Figure S109.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #11: 'GLEASON_SCORE'

'MIRSEQ CHIERARCHICAL' versus 'PSA_RESULT_PREOP'

P value = 0.321 (Kruskal-Wallis (anova)), Q value = 1

Table S118.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 361 10.6 (11.4)
subtype1 110 10.6 (13.9)
subtype2 72 11.0 (11.7)
subtype3 46 9.6 (7.4)
subtype4 80 12.3 (12.0)
subtype5 53 8.3 (5.8)

Figure S110.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'MIRSEQ CHIERARCHICAL' versus 'PSA_VALUE'

P value = 0.379 (Kruskal-Wallis (anova)), Q value = 1

Table S119.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 314 1.0 (3.5)
subtype1 102 1.2 (4.5)
subtype2 67 0.2 (0.3)
subtype3 41 0.8 (2.4)
subtype4 62 1.6 (4.3)
subtype5 42 1.1 (3.0)

Figure S111.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #13: 'PSA_VALUE'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.706 (Fisher's exact test), Q value = 1

Table S120.  Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 2 7 146
subtype1 1 1 51
subtype2 0 3 30
subtype3 0 0 18
subtype4 0 0 9
subtype5 1 3 38

Figure S112.  Get High-res Image Clustering Approach #8: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #14: 'RACE'

Clustering Approach #9: 'MIRseq Mature CNMF subtypes'

Table S121.  Description of clustering approach #9: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 50 61 33 80
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.753 (logrank test), Q value = 1

Table S122.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 223 5 0.3 - 151.4 (22.3)
subtype1 50 1 1.0 - 94.7 (22.0)
subtype2 61 2 0.8 - 151.4 (28.5)
subtype3 33 0 1.1 - 88.2 (28.2)
subtype4 79 2 0.3 - 82.9 (19.9)

Figure S113.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.235 (Kruskal-Wallis (anova)), Q value = 1

Table S123.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 218 60.5 (7.1)
subtype1 47 60.3 (7.2)
subtype2 61 61.9 (6.4)
subtype3 33 60.9 (7.4)
subtype4 77 59.2 (7.4)

Figure S114.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.0465 (Fisher's exact test), Q value = 1

Table S124.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 92 129 1
subtype1 24 25 0
subtype2 17 44 0
subtype3 15 17 1
subtype4 36 43 0

Figure S115.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'MIRseq Mature CNMF subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.392 (Fisher's exact test), Q value = 1

Table S125.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 164 26
subtype1 34 7
subtype2 49 6
subtype3 21 6
subtype4 60 7

Figure S116.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'MIRseq Mature CNMF subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.0582 (Fisher's exact test), Q value = 1

Table S126.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 8 216
subtype1 3 47
subtype2 4 57
subtype3 1 32
subtype4 0 80

Figure S117.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'MIRseq Mature CNMF subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.0392 (Fisher's exact test), Q value = 1

Table S127.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 144 58 2 9
subtype1 36 10 0 3
subtype2 31 26 0 3
subtype3 21 8 1 1
subtype4 56 14 1 2

Figure S118.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'MIRseq Mature CNMF subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 0.399 (Kruskal-Wallis (anova)), Q value = 1

Table S128.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 187 0.4 (1.5)
subtype1 40 0.2 (0.4)
subtype2 54 0.3 (0.9)
subtype3 26 0.9 (3.0)
subtype4 67 0.3 (1.5)

Figure S119.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'MIRseq Mature CNMF subtypes' versus 'GLEASON_SCORE_COMBINED'

P value = 0.0012 (Kruskal-Wallis (anova)), Q value = 0.13

Table S129.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 224 7.5 (1.0)
subtype1 50 7.3 (0.9)
subtype2 61 7.9 (1.0)
subtype3 33 7.5 (1.2)
subtype4 80 7.3 (0.8)

Figure S120.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'MIRseq Mature CNMF subtypes' versus 'GLEASON_SCORE_PRIMARY'

P value = 0.00105 (Kruskal-Wallis (anova)), Q value = 0.11

Table S130.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 224 3.6 (0.6)
subtype1 50 3.4 (0.5)
subtype2 61 3.8 (0.6)
subtype3 33 3.5 (0.7)
subtype4 80 3.5 (0.6)

Figure S121.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'MIRseq Mature CNMF subtypes' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.0799 (Kruskal-Wallis (anova)), Q value = 1

Table S131.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 224 3.9 (0.7)
subtype1 50 3.9 (0.7)
subtype2 61 4.1 (0.7)
subtype3 33 3.9 (0.7)
subtype4 80 3.8 (0.6)

Figure S122.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'MIRseq Mature CNMF subtypes' versus 'GLEASON_SCORE'

P value = 0.000917 (Kruskal-Wallis (anova)), Q value = 0.1

Table S132.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 224 7.5 (1.0)
subtype1 50 7.3 (1.0)
subtype2 61 7.9 (1.0)
subtype3 33 7.7 (1.2)
subtype4 80 7.3 (0.8)

Figure S123.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

'MIRseq Mature CNMF subtypes' versus 'PSA_RESULT_PREOP'

P value = 0.432 (Kruskal-Wallis (anova)), Q value = 1

Table S133.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 224 9.7 (9.5)
subtype1 50 10.9 (11.8)
subtype2 61 10.3 (11.0)
subtype3 33 9.1 (8.9)
subtype4 80 8.7 (6.4)

Figure S124.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'MIRseq Mature CNMF subtypes' versus 'PSA_VALUE'

P value = 0.252 (Kruskal-Wallis (anova)), Q value = 1

Table S134.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 193 0.7 (2.4)
subtype1 47 1.4 (3.9)
subtype2 51 0.2 (0.5)
subtype3 29 0.5 (2.1)
subtype4 66 0.6 (1.8)

Figure S125.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #13: 'PSA_VALUE'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.806 (Fisher's exact test), Q value = 1

Table S135.  Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 3 91
subtype1 0 0 27
subtype2 0 0 3
subtype3 0 0 7
subtype4 1 3 54

Figure S126.  Get High-res Image Clustering Approach #9: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #14: 'RACE'

Clustering Approach #10: 'MIRseq Mature cHierClus subtypes'

Table S136.  Description of clustering approach #10: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6
Number of samples 46 26 17 52 25 58
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.847 (logrank test), Q value = 1

Table S137.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 223 5 0.3 - 151.4 (22.3)
subtype1 46 1 1.2 - 94.7 (22.0)
subtype2 26 1 0.3 - 88.2 (24.2)
subtype3 17 1 1.1 - 107.0 (25.5)
subtype4 52 1 0.8 - 151.4 (26.3)
subtype5 25 0 1.0 - 68.3 (28.9)
subtype6 57 1 1.1 - 82.9 (19.6)

Figure S127.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.363 (Kruskal-Wallis (anova)), Q value = 1

Table S138.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 218 60.5 (7.1)
subtype1 43 59.3 (6.6)
subtype2 25 59.2 (8.3)
subtype3 17 61.2 (6.5)
subtype4 52 62.4 (6.9)
subtype5 25 60.3 (7.6)
subtype6 56 60.0 (7.2)

Figure S128.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.T.STAGE'

P value = 0.00209 (Fisher's exact test), Q value = 0.22

Table S139.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

nPatients T2 T3 T4
ALL 92 129 1
subtype1 24 21 0
subtype2 17 9 0
subtype3 3 14 0
subtype4 14 38 0
subtype5 8 15 1
subtype6 26 32 0

Figure S129.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'PATHOLOGY.T.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'PATHOLOGY.N.STAGE'

P value = 0.00051 (Fisher's exact test), Q value = 0.058

Table S140.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

nPatients 0 1
ALL 164 26
subtype1 27 5
subtype2 20 0
subtype3 8 8
subtype4 43 5
subtype5 19 5
subtype6 47 3

Figure S130.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'PATHOLOGY.N.STAGE'

'MIRseq Mature cHierClus subtypes' versus 'HISTOLOGICAL.TYPE'

P value = 0.148 (Fisher's exact test), Q value = 1

Table S141.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

nPatients PROSTATE ADENOCARCINOMA OTHER SUBTYPE PROSTATE ADENOCARCINOMA ACINAR TYPE
ALL 8 216
subtype1 4 42
subtype2 1 25
subtype3 1 16
subtype4 2 50
subtype5 0 25
subtype6 0 58

Figure S131.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #5: 'HISTOLOGICAL.TYPE'

'MIRseq Mature cHierClus subtypes' versus 'COMPLETENESS.OF.RESECTION'

P value = 0.0355 (Fisher's exact test), Q value = 1

Table S142.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

nPatients R0 R1 R2 RX
ALL 144 58 2 9
subtype1 34 7 0 3
subtype2 20 4 1 0
subtype3 10 6 0 1
subtype4 25 24 0 2
subtype5 17 7 0 1
subtype6 38 10 1 2

Figure S132.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #6: 'COMPLETENESS.OF.RESECTION'

'MIRseq Mature cHierClus subtypes' versus 'NUMBER.OF.LYMPH.NODES'

P value = 9.93e-05 (Kruskal-Wallis (anova)), Q value = 0.012

Table S143.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

nPatients Mean (Std.Dev)
ALL 187 0.4 (1.5)
subtype1 29 0.3 (0.8)
subtype2 20 0.0 (0.0)
subtype3 16 2.3 (4.4)
subtype4 48 0.3 (1.0)
subtype5 24 0.2 (0.4)
subtype6 50 0.1 (0.3)

Figure S133.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #7: 'NUMBER.OF.LYMPH.NODES'

'MIRseq Mature cHierClus subtypes' versus 'GLEASON_SCORE_COMBINED'

P value = 0.000367 (Kruskal-Wallis (anova)), Q value = 0.043

Table S144.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

nPatients Mean (Std.Dev)
ALL 224 7.5 (1.0)
subtype1 46 7.4 (1.0)
subtype2 26 7.0 (1.0)
subtype3 17 8.0 (1.1)
subtype4 52 7.9 (1.1)
subtype5 25 7.3 (0.8)
subtype6 58 7.3 (0.8)

Figure S134.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #8: 'GLEASON_SCORE_COMBINED'

'MIRseq Mature cHierClus subtypes' versus 'GLEASON_SCORE_PRIMARY'

P value = 0.000278 (Kruskal-Wallis (anova)), Q value = 0.033

Table S145.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

nPatients Mean (Std.Dev)
ALL 224 3.6 (0.6)
subtype1 46 3.6 (0.6)
subtype2 26 3.3 (0.5)
subtype3 17 4.0 (0.7)
subtype4 52 3.8 (0.6)
subtype5 25 3.4 (0.5)
subtype6 58 3.5 (0.5)

Figure S135.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #9: 'GLEASON_SCORE_PRIMARY'

'MIRseq Mature cHierClus subtypes' versus 'GLEASON_SCORE_SECONDARY'

P value = 0.121 (Kruskal-Wallis (anova)), Q value = 1

Table S146.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

nPatients Mean (Std.Dev)
ALL 224 3.9 (0.7)
subtype1 46 3.9 (0.7)
subtype2 26 3.7 (0.6)
subtype3 17 4.0 (0.6)
subtype4 52 4.1 (0.7)
subtype5 25 3.9 (0.6)
subtype6 58 3.8 (0.6)

Figure S136.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #10: 'GLEASON_SCORE_SECONDARY'

'MIRseq Mature cHierClus subtypes' versus 'GLEASON_SCORE'

P value = 0.000186 (Kruskal-Wallis (anova)), Q value = 0.022

Table S147.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

nPatients Mean (Std.Dev)
ALL 224 7.5 (1.0)
subtype1 46 7.5 (1.1)
subtype2 26 7.2 (1.0)
subtype3 17 8.2 (0.9)
subtype4 52 7.9 (1.0)
subtype5 25 7.2 (0.8)
subtype6 58 7.3 (0.8)

Figure S137.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #11: 'GLEASON_SCORE'

'MIRseq Mature cHierClus subtypes' versus 'PSA_RESULT_PREOP'

P value = 0.0701 (Kruskal-Wallis (anova)), Q value = 1

Table S148.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

nPatients Mean (Std.Dev)
ALL 224 9.7 (9.5)
subtype1 46 7.3 (4.3)
subtype2 26 9.3 (6.7)
subtype3 17 11.4 (12.2)
subtype4 52 12.1 (15.4)
subtype5 25 11.8 (7.0)
subtype6 58 8.1 (5.3)

Figure S138.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #12: 'PSA_RESULT_PREOP'

'MIRseq Mature cHierClus subtypes' versus 'PSA_VALUE'

P value = 0.379 (Kruskal-Wallis (anova)), Q value = 1

Table S149.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'PSA_VALUE'

nPatients Mean (Std.Dev)
ALL 193 0.7 (2.4)
subtype1 41 0.1 (0.2)
subtype2 24 0.1 (0.3)
subtype3 14 1.8 (3.9)
subtype4 43 0.9 (3.0)
subtype5 25 1.2 (3.8)
subtype6 46 0.5 (1.4)

Figure S139.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #13: 'PSA_VALUE'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.803 (Fisher's exact test), Q value = 1

Table S150.  Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 1 3 91
subtype1 0 0 5
subtype2 0 0 11
subtype3 0 0 3
subtype4 0 0 8
subtype5 0 0 25
subtype6 1 3 39

Figure S140.  Get High-res Image Clustering Approach #10: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #14: 'RACE'

Methods & Data
Input
  • Cluster data file = PRAD-TP.mergedcluster.txt

  • Clinical data file = PRAD-TP.merged_data.txt

  • Number of patients = 367

  • Number of clustering approaches = 10

  • Number of selected clinical features = 14

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)