Correlation between aggregated molecular cancer subtypes and selected clinical features
Sarcoma (Primary solid tumor)
17 October 2014  |  analyses__2014_10_17
Maintainer Information
Citation Information
Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)
Cite as Broad Institute TCGA Genome Data Analysis Center (2014): Correlation between aggregated molecular cancer subtypes and selected clinical features. Broad Institute of MIT and Harvard. doi:10.7908/C1W094VD
Overview
Introduction

This pipeline computes the correlation between cancer subtypes identified by different molecular patterns and selected clinical features.

Summary

Testing the association between subtypes identified by 8 different clustering approaches and 4 clinical features across 157 patients, 3 significant findings detected with P value < 0.05 and Q value < 0.25.

  • 6 subtypes identified in current cancer cohort by 'Copy Number Ratio CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 7 subtypes identified in current cancer cohort by 'METHLYATION CNMF'. These subtypes correlate to 'GENDER'.

  • CNMF clustering analysis on sequencing-based mRNA expression data identified 4 subtypes that do not correlate to any clinical features.

  • Consensus hierarchical clustering analysis on sequencing-based mRNA expression data identified 7 subtypes that correlate to 'AGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRSEQ CNMF'. These subtypes do not correlate to any clinical features.

  • 4 subtypes identified in current cancer cohort by 'MIRSEQ CHIERARCHICAL'. These subtypes correlate to 'AGE'.

  • 3 subtypes identified in current cancer cohort by 'MIRseq Mature CNMF subtypes'. These subtypes do not correlate to any clinical features.

  • 8 subtypes identified in current cancer cohort by 'MIRseq Mature cHierClus subtypes'. These subtypes do not correlate to any clinical features.

Results
Overview of the results

Table 1.  Get Full Table Overview of the association between subtypes identified by 8 different clustering approaches and 4 clinical features. Shown in the table are P values (Q values). Thresholded by P value < 0.05 and Q value < 0.25, 3 significant findings detected.

Clinical
Features
Time
to
Death
AGE GENDER RACE
Statistical Tests logrank test Kruskal-Wallis (anova) Fisher's exact test Fisher's exact test
Copy Number Ratio CNMF subtypes 0.458
(1.00)
0.515
(1.00)
0.0281
(0.675)
0.848
(1.00)
METHLYATION CNMF 0.0237
(0.612)
0.0232
(0.612)
0.00508
(0.157)
0.245
(1.00)
RNAseq CNMF subtypes 0.0105
(0.305)
0.0121
(0.338)
0.0598
(1.00)
0.876
(1.00)
RNAseq cHierClus subtypes 0.194
(1.00)
0.00302
(0.0965)
0.0227
(0.612)
0.558
(1.00)
MIRSEQ CNMF 0.562
(1.00)
0.449
(1.00)
0.113
(1.00)
0.731
(1.00)
MIRSEQ CHIERARCHICAL 0.208
(1.00)
0.00774
(0.232)
0.117
(1.00)
0.793
(1.00)
MIRseq Mature CNMF subtypes 0.264
(1.00)
0.409
(1.00)
0.315
(1.00)
0.537
(1.00)
MIRseq Mature cHierClus subtypes 0.628
(1.00)
0.0484
(1.00)
0.09
(1.00)
0.116
(1.00)
Clustering Approach #1: 'Copy Number Ratio CNMF subtypes'

Table S1.  Description of clustering approach #1: 'Copy Number Ratio CNMF subtypes'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 18 34 27 33 22 21 1
'Copy Number Ratio CNMF subtypes' versus 'Time to Death'

P value = 0.458 (logrank test), Q value = 1

Table S2.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 154 51 0.1 - 175.0 (18.1)
subtype1 18 8 1.1 - 93.4 (17.2)
subtype2 34 12 0.7 - 116.9 (24.1)
subtype3 26 11 0.5 - 108.1 (14.6)
subtype4 33 7 0.1 - 175.0 (15.0)
subtype5 22 7 0.7 - 81.0 (19.8)
subtype6 21 6 1.1 - 66.3 (22.6)

Figure S1.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'Copy Number Ratio CNMF subtypes' versus 'AGE'

P value = 0.515 (Kruskal-Wallis (anova)), Q value = 1

Table S3.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 155 61.7 (13.3)
subtype1 18 65.2 (14.2)
subtype2 34 59.1 (16.4)
subtype3 27 61.4 (12.3)
subtype4 33 60.7 (10.4)
subtype5 22 64.1 (14.5)
subtype6 21 62.1 (11.1)

Figure S2.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #2: 'AGE'

'Copy Number Ratio CNMF subtypes' versus 'GENDER'

P value = 0.0281 (Fisher's exact test), Q value = 0.68

Table S4.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 87 68
subtype1 8 10
subtype2 16 18
subtype3 10 17
subtype4 22 11
subtype5 17 5
subtype6 14 7

Figure S3.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'Copy Number Ratio CNMF subtypes' versus 'RACE'

P value = 0.848 (Fisher's exact test), Q value = 1

Table S5.  Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 5 10 114
subtype1 0 2 14
subtype2 1 2 22
subtype3 0 0 18
subtype4 1 3 28
subtype5 2 1 17
subtype6 1 2 15

Figure S4.  Get High-res Image Clustering Approach #1: 'Copy Number Ratio CNMF subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #2: 'METHLYATION CNMF'

Table S6.  Description of clustering approach #2: 'METHLYATION CNMF'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 25 25 42 18 15 22 5
'METHLYATION CNMF' versus 'Time to Death'

P value = 0.0237 (logrank test), Q value = 0.61

Table S7.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 151 50 0.1 - 175.0 (18.1)
subtype1 24 8 2.0 - 108.1 (19.0)
subtype2 25 9 0.7 - 70.5 (17.8)
subtype3 42 14 0.1 - 81.0 (25.8)
subtype4 18 9 0.1 - 74.7 (7.2)
subtype5 15 3 0.1 - 116.9 (22.6)
subtype6 22 6 1.1 - 143.4 (16.9)
subtype7 5 1 0.5 - 175.0 (13.6)

Figure S5.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #1: 'Time to Death'

'METHLYATION CNMF' versus 'AGE'

P value = 0.0232 (Kruskal-Wallis (anova)), Q value = 0.61

Table S8.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 152 61.5 (13.5)
subtype1 25 63.0 (13.2)
subtype2 25 63.3 (15.2)
subtype3 42 60.8 (12.1)
subtype4 18 54.7 (17.1)
subtype5 15 54.8 (7.8)
subtype6 22 68.6 (12.1)
subtype7 5 63.6 (6.7)

Figure S6.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #2: 'AGE'

'METHLYATION CNMF' versus 'GENDER'

P value = 0.00508 (Fisher's exact test), Q value = 0.16

Table S9.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 87 65
subtype1 8 17
subtype2 11 14
subtype3 25 17
subtype4 14 4
subtype5 12 3
subtype6 12 10
subtype7 5 0

Figure S7.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #3: 'GENDER'

'METHLYATION CNMF' versus 'RACE'

P value = 0.245 (Fisher's exact test), Q value = 1

Table S10.  Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 5 10 111
subtype1 0 1 17
subtype2 2 1 15
subtype3 0 3 38
subtype4 1 0 13
subtype5 1 3 8
subtype6 1 2 16
subtype7 0 0 4

Figure S8.  Get High-res Image Clustering Approach #2: 'METHLYATION CNMF' versus Clinical Feature #4: 'RACE'

Clustering Approach #3: 'RNAseq CNMF subtypes'

Table S11.  Description of clustering approach #3: 'RNAseq CNMF subtypes'

Cluster Labels 1 2 3 4
Number of samples 37 56 33 29
'RNAseq CNMF subtypes' versus 'Time to Death'

P value = 0.0105 (logrank test), Q value = 0.3

Table S12.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 154 51 0.1 - 175.0 (18.4)
subtype1 37 11 0.7 - 108.1 (23.5)
subtype2 56 16 0.1 - 116.9 (24.7)
subtype3 33 11 1.8 - 143.4 (15.7)
subtype4 28 13 0.1 - 175.0 (6.8)

Figure S9.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq CNMF subtypes' versus 'AGE'

P value = 0.0121 (Kruskal-Wallis (anova)), Q value = 0.34

Table S13.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 155 61.2 (13.3)
subtype1 37 63.7 (13.1)
subtype2 56 59.0 (11.2)
subtype3 33 66.7 (13.4)
subtype4 29 56.2 (14.8)

Figure S10.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq CNMF subtypes' versus 'GENDER'

P value = 0.0598 (Fisher's exact test), Q value = 1

Table S14.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 88 67
subtype1 15 22
subtype2 38 18
subtype3 17 16
subtype4 18 11

Figure S11.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq CNMF subtypes' versus 'RACE'

P value = 0.876 (Fisher's exact test), Q value = 1

Table S15.  Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 5 10 114
subtype1 2 1 21
subtype2 1 5 47
subtype3 1 2 26
subtype4 1 2 20

Figure S12.  Get High-res Image Clustering Approach #3: 'RNAseq CNMF subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #4: 'RNAseq cHierClus subtypes'

Table S16.  Description of clustering approach #4: 'RNAseq cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6 7
Number of samples 26 11 39 21 30 19 9
'RNAseq cHierClus subtypes' versus 'Time to Death'

P value = 0.194 (logrank test), Q value = 1

Table S17.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 154 51 0.1 - 175.0 (18.4)
subtype1 26 11 0.7 - 70.5 (21.9)
subtype2 11 1 2.4 - 59.5 (23.1)
subtype3 39 13 0.1 - 81.0 (27.2)
subtype4 20 6 0.1 - 108.1 (11.5)
subtype5 30 12 1.1 - 143.4 (13.8)
subtype6 19 3 0.1 - 116.9 (21.0)
subtype7 9 5 0.1 - 175.0 (10.5)

Figure S13.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'RNAseq cHierClus subtypes' versus 'AGE'

P value = 0.00302 (Kruskal-Wallis (anova)), Q value = 0.097

Table S18.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 155 61.2 (13.3)
subtype1 26 67.0 (11.4)
subtype2 11 62.1 (13.5)
subtype3 39 61.1 (11.5)
subtype4 21 60.3 (13.0)
subtype5 30 65.5 (13.0)
subtype6 19 53.9 (9.1)
subtype7 9 47.0 (19.3)

Figure S14.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'RNAseq cHierClus subtypes' versus 'GENDER'

P value = 0.0227 (Fisher's exact test), Q value = 0.61

Table S19.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 88 67
subtype1 11 15
subtype2 5 6
subtype3 23 16
subtype4 9 12
subtype5 16 14
subtype6 16 3
subtype7 8 1

Figure S15.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'RNAseq cHierClus subtypes' versus 'RACE'

P value = 0.558 (Fisher's exact test), Q value = 1

Table S20.  Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 5 10 114
subtype1 1 0 15
subtype2 1 1 5
subtype3 0 3 35
subtype4 1 1 16
subtype5 1 3 21
subtype6 1 2 14
subtype7 0 0 8

Figure S16.  Get High-res Image Clustering Approach #4: 'RNAseq cHierClus subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #5: 'MIRSEQ CNMF'

Table S21.  Description of clustering approach #5: 'MIRSEQ CNMF'

Cluster Labels 1 2 3
Number of samples 67 21 67
'MIRSEQ CNMF' versus 'Time to Death'

P value = 0.562 (logrank test), Q value = 1

Table S22.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 154 52 0.1 - 175.0 (18.4)
subtype1 66 25 0.1 - 175.0 (17.8)
subtype2 21 7 0.7 - 93.4 (18.1)
subtype3 67 20 0.1 - 116.9 (21.4)

Figure S17.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CNMF' versus 'AGE'

P value = 0.449 (Kruskal-Wallis (anova)), Q value = 1

Table S23.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 155 61.4 (13.5)
subtype1 67 61.5 (14.2)
subtype2 21 64.9 (13.7)
subtype3 67 60.3 (12.6)

Figure S18.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #2: 'AGE'

'MIRSEQ CNMF' versus 'GENDER'

P value = 0.113 (Fisher's exact test), Q value = 1

Table S24.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 87 68
subtype1 32 35
subtype2 11 10
subtype3 44 23

Figure S19.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CNMF' versus 'RACE'

P value = 0.731 (Fisher's exact test), Q value = 1

Table S25.  Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 5 10 115
subtype1 1 4 46
subtype2 1 2 14
subtype3 3 4 55

Figure S20.  Get High-res Image Clustering Approach #5: 'MIRSEQ CNMF' versus Clinical Feature #4: 'RACE'

Clustering Approach #6: 'MIRSEQ CHIERARCHICAL'

Table S26.  Description of clustering approach #6: 'MIRSEQ CHIERARCHICAL'

Cluster Labels 1 2 3 4
Number of samples 50 18 76 11
'MIRSEQ CHIERARCHICAL' versus 'Time to Death'

P value = 0.208 (logrank test), Q value = 1

Table S27.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 154 52 0.1 - 175.0 (18.4)
subtype1 49 20 0.1 - 143.4 (19.4)
subtype2 18 5 0.1 - 93.4 (18.7)
subtype3 76 21 0.1 - 116.9 (21.2)
subtype4 11 6 1.1 - 175.0 (8.6)

Figure S21.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #1: 'Time to Death'

'MIRSEQ CHIERARCHICAL' versus 'AGE'

P value = 0.00774 (Kruskal-Wallis (anova)), Q value = 0.23

Table S28.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 155 61.4 (13.5)
subtype1 50 63.2 (13.3)
subtype2 18 69.7 (12.8)
subtype3 76 59.8 (12.0)
subtype4 11 51.2 (17.0)

Figure S22.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #2: 'AGE'

'MIRSEQ CHIERARCHICAL' versus 'GENDER'

P value = 0.117 (Fisher's exact test), Q value = 1

Table S29.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 87 68
subtype1 22 28
subtype2 9 9
subtype3 48 28
subtype4 8 3

Figure S23.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #3: 'GENDER'

'MIRSEQ CHIERARCHICAL' versus 'RACE'

P value = 0.793 (Fisher's exact test), Q value = 1

Table S30.  Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 5 10 115
subtype1 1 1 33
subtype2 1 1 13
subtype3 3 7 60
subtype4 0 1 9

Figure S24.  Get High-res Image Clustering Approach #6: 'MIRSEQ CHIERARCHICAL' versus Clinical Feature #4: 'RACE'

Clustering Approach #7: 'MIRseq Mature CNMF subtypes'

Table S31.  Description of clustering approach #7: 'MIRseq Mature CNMF subtypes'

Cluster Labels 1 2 3
Number of samples 50 44 20
'MIRseq Mature CNMF subtypes' versus 'Time to Death'

P value = 0.264 (logrank test), Q value = 1

Table S32.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 40 0.1 - 175.0 (17.8)
subtype1 49 22 0.1 - 175.0 (11.9)
subtype2 44 14 0.1 - 81.0 (22.0)
subtype3 20 4 0.7 - 55.5 (16.4)

Figure S25.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature CNMF subtypes' versus 'AGE'

P value = 0.409 (Kruskal-Wallis (anova)), Q value = 1

Table S33.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 114 62.2 (13.6)
subtype1 50 61.1 (14.5)
subtype2 44 61.4 (12.0)
subtype3 20 66.5 (14.3)

Figure S26.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature CNMF subtypes' versus 'GENDER'

P value = 0.315 (Fisher's exact test), Q value = 1

Table S34.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 68 46
subtype1 28 22
subtype2 30 14
subtype3 10 10

Figure S27.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature CNMF subtypes' versus 'RACE'

P value = 0.537 (Fisher's exact test), Q value = 1

Table S35.  Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 6 86
subtype1 1 2 36
subtype2 1 3 36
subtype3 2 1 14

Figure S28.  Get High-res Image Clustering Approach #7: 'MIRseq Mature CNMF subtypes' versus Clinical Feature #4: 'RACE'

Clustering Approach #8: 'MIRseq Mature cHierClus subtypes'

Table S36.  Description of clustering approach #8: 'MIRseq Mature cHierClus subtypes'

Cluster Labels 1 2 3 4 5 6 7 8
Number of samples 10 20 30 14 8 12 8 12
'MIRseq Mature cHierClus subtypes' versus 'Time to Death'

P value = 0.628 (logrank test), Q value = 1

Table S37.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

nPatients nDeath Duration Range (Median), Month
ALL 113 40 0.1 - 175.0 (17.8)
subtype1 10 2 0.1 - 36.7 (13.9)
subtype2 19 9 0.5 - 108.1 (20.1)
subtype3 30 11 0.1 - 81.0 (26.2)
subtype4 14 4 0.1 - 26.9 (14.6)
subtype5 8 1 4.5 - 36.4 (21.2)
subtype6 12 5 5.1 - 143.4 (19.8)
subtype7 8 2 0.7 - 55.5 (5.1)
subtype8 12 6 0.1 - 175.0 (7.2)

Figure S29.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #1: 'Time to Death'

'MIRseq Mature cHierClus subtypes' versus 'AGE'

P value = 0.0484 (Kruskal-Wallis (anova)), Q value = 1

Table S38.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

nPatients Mean (Std.Dev)
ALL 114 62.2 (13.6)
subtype1 10 62.2 (8.9)
subtype2 20 61.9 (10.9)
subtype3 30 62.4 (11.6)
subtype4 14 63.8 (12.9)
subtype5 8 54.6 (11.9)
subtype6 12 70.2 (10.1)
subtype7 8 71.8 (18.5)
subtype8 12 50.9 (18.6)

Figure S30.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #2: 'AGE'

'MIRseq Mature cHierClus subtypes' versus 'GENDER'

P value = 0.09 (Fisher's exact test), Q value = 1

Table S39.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

nPatients FEMALE MALE
ALL 68 46
subtype1 4 6
subtype2 7 13
subtype3 22 8
subtype4 9 5
subtype5 5 3
subtype6 7 5
subtype7 4 4
subtype8 10 2

Figure S31.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #3: 'GENDER'

'MIRseq Mature cHierClus subtypes' versus 'RACE'

P value = 0.116 (Fisher's exact test), Q value = 1

Table S40.  Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

nPatients ASIAN BLACK OR AFRICAN AMERICAN WHITE
ALL 4 6 86
subtype1 0 1 8
subtype2 0 0 11
subtype3 0 1 27
subtype4 1 1 9
subtype5 1 2 5
subtype6 0 0 12
subtype7 1 0 5
subtype8 1 1 9

Figure S32.  Get High-res Image Clustering Approach #8: 'MIRseq Mature cHierClus subtypes' versus Clinical Feature #4: 'RACE'

Methods & Data
Input
  • Cluster data file = SARC-TP.mergedcluster.txt

  • Clinical data file = SARC-TP.merged_data.txt

  • Number of patients = 157

  • Number of clustering approaches = 8

  • Number of selected clinical features = 4

  • Exclude small clusters that include fewer than K patients, K = 3

Clustering approaches
CNMF clustering

consensus non-negative matrix factorization clustering approach (Brunet et al. 2004)

Consensus hierarchical clustering

Resampling-based clustering method (Monti et al. 2003)

Survival analysis

For survival clinical features, the Kaplan-Meier survival curves of tumors with and without gene mutations were plotted and the statistical significance P values were estimated by logrank test (Bland and Altman 2004) using the 'survdiff' function in R

Fisher's exact test

For binary clinical features, two-tailed Fisher's exact tests (Fisher 1922) were used to estimate the P values using the 'fisher.test' function in R

Q value calculation

For multiple hypothesis correction, Q value is the False Discovery Rate (FDR) analogue of the P value (Benjamini and Hochberg 1995), defined as the minimum FDR at which the test may be called significant. We used the 'Benjamini and Hochberg' method of 'p.adjust' function in R to convert P values into Q values.

Download Results

In addition to the links below, the full results of the analysis summarized in this report can also be downloaded programmatically using firehose_get, or interactively from either the Broad GDAC website or TCGA Data Coordination Center Portal.

References
[1] Brunet et al., Metagenes and molecular pattern discovery using matrix factorization, PNAS 101(12):4164-9 (2004)
[3] Bland and Altman, Statistics notes: The logrank test, BMJ 328(7447):1073 (2004)
[4] Fisher, R.A., On the interpretation of chi-square from contingency tables, and the calculation of P, Journal of the Royal Statistical Society 85(1):87-94 (1922)
[5] Benjamini and Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B 59:289-300 (1995)